Serotonin transporter

Last updated

SLC6A4
SLC6A4.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SLC6A4 , 5-HTT, 5HTT, HTT, OCD1, SERT, SERT1, hSERT, Solute Carrier Family 6 (neurotransmitter transporter), member 4, solute carrier family 6 member 4, 5-HTTLPR
External IDs OMIM: 182138; MGI: 96285; HomoloGene: 817; GeneCards: SLC6A4; OMA:SLC6A4 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001045

NM_010484

RefSeq (protein)

NP_001036

NP_034614

Location (UCSC) Chr 17: 30.19 – 30.24 Mb Chr 11: 76.89 – 76.92 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The serotonin transporter (SERT or 5-HTT) also known as the sodium-dependent serotonin transporter and solute carrier family 6 member 4 is a protein that in humans is encoded by the SLC6A4 gene. [5] SERT is a type of monoamine transporter protein that transports the neurotransmitter serotonin from the synaptic cleft back to the presynaptic neuron, in a process known as serotonin reuptake. [6]

Contents

This transport of serotonin by the SERT protein terminates the action of serotonin and recycles it in a sodium-dependent manner. Many antidepressant medications of the SSRI and tricyclic antidepressant classes work by binding to SERT and thus reducing serotonin reuptake. [7] It is a member of the sodium:neurotransmitter symporter family. A repeat length polymorphism in the promoter of this gene has been shown to affect the rate of serotonin uptake and may play a role in sudden infant death syndrome, aggressive behavior in Alzheimer disease patients, post-traumatic stress disorder and depression-susceptibility in people experiencing emotional trauma. [8]

Mechanism of action

Serotonin-reuptake transporters are dependent on both the concentration of potassium ion in the cytoplasm and the concentrations of sodium and chloride ions in the extracellular fluid. In order to function properly the serotonin transporter requires the membrane potential created by the sodium-potassium adenosine triphosphatase.

The serotonin transporter first binds a sodium ion, followed by the serotonin, and then a chloride ion; it is then allowed, thanks to the membrane potential, to flip inside the cell freeing all the elements previously bound. Right after the release of the serotonin in the cytoplasm a potassium ion binds to the transporter which is now able to flip back out returning to its active state. [9]

Function

The serotonin transporter removes serotonin from the synaptic cleft back into the synaptic boutons. Thus, it terminates the effects of serotonin and simultaneously enables its reuse by the presynaptic neuron. [7]

Neurons communicate by using chemical messengers like serotonin between cells. The transporter protein, by recycling serotonin, regulates its concentration in a gap, or synapse, and thus its effects on a receiving neuron's receptors.

Medical studies have shown that changes in serotonin transporter metabolism appear to be associated with many different phenomena, including alcoholism, clinical depression, obsessive–compulsive disorder (OCD), romantic love, [10] hypertension and generalized social phobia. [11]

The serotonin transporter is also present in platelets; there, serotonin functions as a vasoconstrictive substance. It also serves as a signalling molecule to induce platelet aggregation.

Pharmacology

In 1995 and 1996, scientists in Europe had identified the polymorphism 5-HTTLPR, a serotonin-transporter in the gene SLC6A4 . [12] [13] In December 1996, a group of researchers led by D.A. Collier of the Institute of Psychiatry, Psychology and Neuroscience, published their findings in Molecular Psychiatry, that, "5-HTTLPR-dependent variation in functional 5-HTT expression is a potential genetic susceptibility factor for affective disorders." [14]

SERT spans the plasma membrane 12 times. It belongs to the NE, DA, SERT monoamine transporter family. Transporters are important sites for agents that treat psychiatric disorders. Drugs that reduce the binding of serotonin to transporters (serotonin reuptake inhibitors, or SRIs) are used to treat mental disorders. The selective serotonin reuptake inhibitor (SSRI) fluoxetine and the tricyclic antidepressant (TCA) clomipramine are examples of serotonin reuptake inhibitors.

Following the elucidation of structures of the homologous bacterial transporter, LeuT, co-crystallized with tricyclic antidepressants in the vestibule leading from the extracellular space to the central substrate site it was inferred that this binding site did also represent the binding site relevant for antidepressant binding in SERT. [15] However, studies on SERT showed that tricyclic antidepressants and selective serotonin reuptake inhibitors bind to the central binding site overlapping the substrate binding site. [16] [17] [18] The Drosophila dopamine transporter, which displays a pharmacology similar to SERT, was crystallized with tricyclic antidepressants and confirmed the earlier finding that the substrate binding site is also the antidepressant binding site. [19]

12a Mattson 2005.svg
12a
4b Tamagnan 2005.svg
4b

Ligands

Genetics

Slc6a4 is expressed in median and dorsal raphe in the midbrain of the postnatal day 56 mouse. Allen Brain Atlases Slc6a4, ISH, mouse, dorsal raphe.jpg
Slc6a4 is expressed in median and dorsal raphe in the midbrain of the postnatal day 56 mouse. Allen Brain Atlases
Serotonin transporter 1 (Slc6a4) in green, tyrosine hydroxylase in red and nuclear DNA in blue in a region of rat brain stem. Antibody staining and imaging by EnCor Biotechnology Inc. Serotonin transporter 1 in green, tyrosine hydoxylase in red and nuclear DNA in blue in a region of rat brain.jpg
Serotonin transporter 1 (Slc6a4) in green, tyrosine hydroxylase in red and nuclear DNA in blue in a region of rat brain stem. Antibody staining and imaging by EnCor Biotechnology Inc.

|

Chromosome 17 Chromosome 17.svg
Chromosome 17

The gene that encodes the serotonin transporter is called solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 (SLC6A4, see Solute carrier family). In humans the gene is found on chromosome 17 on location 17q11.1q12. [27]

Mutations associated with the gene may result in changes in serotonin transporter function, and experiments with mice have identified more than 50 different phenotypic changes as a result of genetic variation. These phenotypic changes may, e.g., be increased anxiety and gut dysfunction. [28] Some of the human genetic variations associated with the gene are: [28]

Length variation in 5-HTTLPR

According to a 1996 article in The Journal of Neurochemistry, the promoter region of the SLC6A4 gene contains a polymorphism with "short" and "long" repeats in a region: 5-HTT-linked polymorphic region (5-HTTLPR or SERTPR). [29] The short variation has 14 repeats of a sequence while the long variation has 16 repeats. [27] A second 1996 article stated that the short variation leads to less transcription for SLC6A4, and it has been found that it can partly account for anxiety-related personality traits. [30] This polymorphism has been extensively investigated in over 300 scientific studies (as of 2006). [31] The 5-HTTLPR polymorphism may be subdivided further: One study published in 2000 found 14 allelic variants (14-A, 14-B, 14-C, 14-D, 15, 16-A, 16-B, 16-C, 16-D, 16-E, 16-F, 19, 20 and 22) in a group of around 200 Japanese and Caucasian people. [27]

In addition to altering the expression of SERT protein and concentrations of extracellular serotonin in the brain, the 5-HTTLPR variation is associated with changes in brain structure. One 2005 study found less grey matter in perigenual anterior cingulate cortex and amygdala for short allele carriers of the 5-HTTLPR polymorphism compared to subjects with the long/long genotype. [32]

In contrast, a 2008 meta-analysis found no significant overall association between the 5-HTTLPR polymorphism and autism. [33] A hypothesized gene–environment interaction between the short/short allele of the 5-HTTLPR and life stress as predictor for major depression has suffered a similar fate: after an influential [34] initial report in 2003 [35] there were mixed results in replication in 2008, [36] and a 2009 meta-analysis was negative. [37] See 5-HTTLPR for more information.

rs25532

rs25532 is a SNP (C>T) close to the site of 5-HTTLPR. It has been examined in connection with obsessive compulsive disorder (OCD). [38]

I425V

I425V is a rare mutation on the ninth exon. In 2003, researchers from Japan and the US reported that they had found this genetic variation in unrelated families with OCD, and have found that it leads to faulty transporter function and regulation. A second variant in the same gene of some patients with this mutation suggests a genetic "double hit", resulting in greater biochemical effects and more severe symptoms. [39] [40] [41]

VNTR in STin2

Another noncoding polymorphism is a VNTR in the second intron (STin2). In a 2005 study, it was found with three alleles: 9, 10 and 12 repeats. A meta-analysis has found that the 12 repeat allele of the STin2 VNTR polymorphism had some minor (with odds ratio 1.24), but statistically significant, association with schizophrenia. [42] A 2008 meta-analysis found no significant overall association between the STin2 VNTR polymorphism and autism. [33] Furthermore, a 2003 meta-analysis of affective disorders, major depressive disorder and bipolar disorder, found a minor association to the intron 2 VNTR polymorphism, but the results of the meta-analysis were dependent upon a large effect from one individual study. [43]

The polymorphism has also been related to personality traits with a 2008 Russian study finding individuals with the STin2.10 allele having lower neuroticism scores as measured with the Eysenck Personality Inventory. [44]

Neuroimaging

The distribution of the serotonin transporter in the brain may be imaged with positron emission tomography using radioligands called DASB and DAPP; the first such studies on the human brain were reported in 2000. [45] DASB and DAPP are not the only radioligands for the serotonin transporter. There are numerous others, with the most popular probably being the β-CIT radioligand with an iodine-123 isotope that is used for brain scanning with single-photon emission computed tomography (SPECT) according to a 1993 article in the Journal of Neural Transmission. [46] The radioligands were used in 2006 to examine whether variables such as age, gender or genotype are associated with differential serotonin transporter binding. [47] Healthy subjects that have a high score of neuroticism a personality trait in the Revised NEO Personality Inventory were found to have more serotonin transporter binding in the thalamus in 2007. [48]

Neuroimaging and genetics

Studies on the serotonin transporter have combined neuroimaging and genetics methods, e.g., a voxel-based morphometry study found less grey matter in perigenual anterior cingulate cortex and amygdala for short allele carriers of the 5-HTTLPR polymorphism compared to subjects with the long/long genotype. [32]

Related Research Articles

<span class="mw-page-title-main">Tricyclic antidepressant</span> Class of medications

Tricyclic antidepressants (TCAs) are a class of medications that are used primarily as antidepressants. TCAs were discovered in the early 1950s and were marketed later in the decade. They are named after their chemical structure, which contains three rings of atoms. Tetracyclic antidepressants (TeCAs), which contain four rings of atoms, are a closely related group of antidepressant compounds.

<span class="mw-page-title-main">Reuptake</span> Reabsorption of a neurotransmitter by a neurotransmitter transporter

Reuptake is the reabsorption of a neurotransmitter by a neurotransmitter transporter located along the plasma membrane of an axon terminal or glial cell after it has performed its function of transmitting a neural impulse.

<span class="mw-page-title-main">Monoamine transporter</span> Proteins that function as integral plasma-membrane transporters

Monoamine transporters (MATs) are proteins that function as integral plasma-membrane transporters to regulate concentrations of extracellular monoamine neurotransmitters. The three major classes are serotonin transporters (SERTs), dopamine transporters (DATs), and norepinephrine transporters (NETs) and are responsible for the reuptake of their associated amine neurotransmitters. MATs are located just outside the synaptic cleft (peri-synaptically), transporting monoamine transmitter overflow from the synaptic cleft back to the cytoplasm of the pre-synaptic neuron. MAT regulation generally occurs through protein phosphorylation and post-translational modification. Due to their significance in neuronal signaling, MATs are commonly associated with drugs used to treat mental disorders as well as recreational drugs. Compounds targeting MATs range from medications such as the wide variety of tricyclic antidepressants, selective serotonin reuptake inhibitors such as fluoxetine (Prozac) to stimulant medications such as methylphenidate (Ritalin) and amphetamine in its many forms and derivatives methamphetamine (Desoxyn) and lisdexamfetamine (Vyvanse). Furthermore, drugs such as MDMA and natural alkaloids such as cocaine exert their effects in part by their interaction with MATs, by blocking the transporters from mopping up dopamine, serotonin, and other neurotransmitters from the synapse.

<span class="mw-page-title-main">Serotonin–norepinephrine reuptake inhibitor</span> Class of antidepressant medication

Serotonin–norepinephrine reuptake inhibitors (SNRIs) are a class of antidepressant medications used to treat major depressive disorder (MDD), anxiety disorders, social phobia, chronic neuropathic pain, fibromyalgia syndrome (FMS), and menopausal symptoms. Off-label uses include treatments for attention-deficit hyperactivity disorder (ADHD), obsessive–compulsive disorder (OCD), and migraine prevention. SNRIs are monoamine reuptake inhibitors; specifically, they inhibit the reuptake of serotonin and norepinephrine. These neurotransmitters are thought to play an important role in mood regulation. SNRIs can be contrasted with the selective serotonin reuptake inhibitors (SSRIs) and norepinephrine reuptake inhibitors (NRIs), which act upon single neurotransmitters.

<span class="mw-page-title-main">Imipramine</span> Antidepressant

Imipramine, sold under the brand name Tofranil, among others, is a tricyclic antidepressant (TCA) mainly used in the treatment of depression. It is also effective in treating anxiety and panic disorder. Imipramine is taken by mouth.

<span class="mw-page-title-main">Clomipramine</span> Antidepressant

Clomipramine, sold under the brand name Anafranil among others, is a tricyclic antidepressant (TCA). It is used in the treatment of various conditions, most-notably obsessive–compulsive disorder but also many other disorders, including hyperacusis, panic disorder, major depressive disorder, trichotilomania, body dysmorphic disorder and chronic pain. It has also been notably used to treat premature ejaculation and the cataplexy associated with narcolepsy.

<span class="mw-page-title-main">Nortriptyline</span> Antidepressant medication

Nortriptyline, sold under the brand name Aventyl, among others, is a tricyclic antidepressant. This medicine is also sometimes used for neuropathic pain, attention deficit hyperactivity disorder (ADHD), smoking cessation and anxiety. As with many antidepressants, its use for young people with depression and other psychiatric disorders may be limited due to increased suicidality in the 18–24 population initiating treatment. Nortriptyline is a less preferred treatment for ADHD and stopping smoking. It is taken by mouth.

<span class="mw-page-title-main">Dopamine transporter</span> Mammalian protein found in Homo sapiens

The dopamine transporter is a membrane-spanning protein coded for in humans by the SLC6A3 gene, that pumps the neurotransmitter dopamine out of the synaptic cleft back into cytosol. In the cytosol, other transporters sequester the dopamine into vesicles for storage and later release. Dopamine reuptake via DAT provides the primary mechanism through which dopamine is cleared from synapses, although there may be an exception in the prefrontal cortex, where evidence points to a possibly larger role of the norepinephrine transporter.

<span class="mw-page-title-main">Norepinephrine transporter</span> Protein-coding gene in the species Homo sapiens

The norepinephrine transporter (NET), also known as noradrenaline transporter (NAT), is a protein that in humans is encoded by the solute carrier family 6 member 2 (SLC6A2) gene.

<span class="mw-page-title-main">Serotonin reuptake inhibitor</span> Class of drug

A serotonin reuptake inhibitor (SRI) is a type of drug which acts as a reuptake inhibitor of the neurotransmitter serotonin by blocking the action of the serotonin transporter (SERT). This in turn leads to increased extracellular concentrations of serotonin and, therefore, an increase in serotonergic neurotransmission. It is a type of monoamine reuptake inhibitor (MRI); other types of MRIs include dopamine reuptake inhibitors and norepinephrine reuptake inhibitors.

<span class="mw-page-title-main">DASB</span> Chemical compound

DASB, also known as 3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, is a compound that binds to the serotonin transporter. Labeled with carbon-11 — a radioactive isotope — it has been used as a radioligand in neuroimaging with positron emission tomography (PET) since around year 2000. In this context it is regarded as one of the superior radioligands for PET study of the serotonin transporter in the brain, since it has high selectivity for the serotonin transporter.

rs6295, also called C(-1019)G, is a gene variation—a single nucleotide polymorphism (SNP)—in the HTR1A gene. It is one of the most investigated SNPs of its gene. The C-allele is the most prevalent with 0.675 against the G-allele with 0.325 among Caucasian.

5-HTTLPR is a degenerate repeat polymorphic region in SLC6A4, the gene that codes for the serotonin transporter. Since the polymorphism was identified in the middle of the 1990s, it has been extensively investigated, e.g., in connection with neuropsychiatric disorders. A 2006 scientific article stated that "over 300 behavioral, psychiatric, pharmacogenetic and other medical genetics papers" had analyzed the polymorphism. While often discussed as an example of gene-environment interaction, this contention is contested.

<span class="mw-page-title-main">Klaus-Peter Lesch</span> German clinical psychiatrist

Klaus-Peter Lesch is a German clinical psychiatrist who has been investigating the neurobiological foundation of personality traits.

Scientific studies have found that different brain areas show altered activity in humans with major depressive disorder (MDD), and this has encouraged advocates of various theories that seek to identify a biochemical origin of the disease, as opposed to theories that emphasize psychological or situational causes. Factors spanning these causative groups include nutritional deficiencies in magnesium, vitamin D, and tryptophan with situational origin but biological impact. Several theories concerning the biologically based cause of depression have been suggested over the years, including theories revolving around monoamine neurotransmitters, neuroplasticity, neurogenesis, inflammation and the circadian rhythm. Physical illnesses, including hypothyroidism and mitochondrial disease, can also trigger depressive symptoms.

Terrie Edith Moffitt is an American-British clinical psychologist who is best known for her pioneering research on the development of antisocial behavior and for her collaboration with colleague and partner Avshalom Caspi in research on gene-environment interactions in mental disorders.

<span class="mw-page-title-main">Serotonin–dopamine reuptake inhibitor</span> Class of drug

A serotonin–dopamine reuptake inhibitor (SDRI) is a type of drug which acts as a reuptake inhibitor of the monoamine neurotransmitters serotonin and dopamine by blocking the actions of the serotonin transporter (SERT) and dopamine transporter (DAT), respectively. This in turn leads to increased extracellular concentrations of serotonin and dopamine, and, therefore, an increase in serotonergic and dopaminergic neurotransmission.

A monoamine reuptake inhibitor (MRI) is a drug that acts as a reuptake inhibitor of one or more of the three major monoamine neurotransmitters serotonin, norepinephrine, and dopamine by blocking the action of one or more of the respective monoamine transporters (MATs), which include the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT). This in turn results in an increase in the synaptic concentrations of one or more of these neurotransmitters and therefore an increase in monoaminergic neurotransmission.

The pharmacology of antidepressants is not entirely clear. The earliest and probably most widely accepted scientific theory of antidepressant action is the monoamine hypothesis, which states that depression is due to an imbalance of the monoamine neurotransmitters. It was originally proposed based on the observation that certain hydrazine anti-tuberculosis agents produce antidepressant effects, which was later linked to their inhibitory effects on monoamine oxidase, the enzyme that catalyses the breakdown of the monoamine neurotransmitters. All currently marketed antidepressants have the monoamine hypothesis as their theoretical basis, with the possible exception of agomelatine which acts on a dual melatonergic-serotonergic pathway. Despite the success of the monoamine hypothesis it has a number of limitations: for one, all monoaminergic antidepressants have a delayed onset of action of at least a week; and secondly, there are a sizeable portion (>40%) of depressed patients that do not adequately respond to monoaminergic antidepressants. Further evidence to the contrary of the monoamine hypothesis are the recent findings that a single intravenous infusion with ketamine, an antagonist of the NMDA receptor — a type of glutamate receptor — produces rapid, robust and sustained antidepressant effects. Monoamine precursor depletion also fails to alter mood. To overcome these flaws with the monoamine hypothesis a number of alternative hypotheses have been proposed, including the glutamate, neurogenic, epigenetic, cortisol hypersecretion and inflammatory hypotheses. Another hypothesis that has been proposed which would explain the delay is the hypothesis that monoamines don't directly influence mood, but influence emotional perception biases.

Selective serotonin reuptake inhibitors, or serotonin-specific re-uptake inhibitor (SSRIs), are a class of chemical compounds that have application as antidepressants and in the treatment of depression and other psychiatric disorders. SSRIs are therapeutically useful in the treatment of panic disorder (PD), posttraumatic stress disorder (PTSD), social anxiety disorder, obsessive-compulsive disorder (OCD), premenstrual dysphoric disorder (PMDD), and anorexia. There is also clinical evidence of the value of SSRIs in the treatment of the symptoms of schizophrenia and their ability to prevent cardiovascular diseases.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000108576 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020838 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "SLC6A4 Gene (Protein Coding)".
  6. "SLC6A4 - Sodium-dependent serotonin transporter - Homo sapiens (Human) - SLC6A4 gene & protein".
  7. 1 2 Squire L, et al., eds. (2008). Fundamental neuroscience (3rd ed.). Amsterdam: Elsevier / Academic Press. p. 143. ISBN   978-0-12-374019-9.
  8. "Entrez Gene: SLC6A4 solute carrier family 6 (neurotransmitter transporter, serotonin), member 4".
  9. "Mechanism of Action of the Serotonin Transporter". web.williams.edu. Retrieved 28 December 2016.
  10. Marazziti D, Akiskal HS, Rossi A, Cassano GB (May 1999). "Alteration of the platelet serotonin transporter in romantic love". Psychological Medicine. 29 (3): 741–5. doi:10.1017/S0033291798007946. PMID   10405096. S2CID   12630172.
  11. van der Wee NJ, van Veen JF, Stevens H, van Vliet IM, van Rijk PP, Westenberg HG (May 2008). "Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-beta-(4-iodophenyl)-tropane SPECT". Journal of Nuclear Medicine. 49 (5): 757–63. doi: 10.2967/jnumed.107.045518 . PMID   18413401.
  12. Heils A, Teufel A, Petri S, Seemann M, Bengel D, Balling U, Riederer P, Lesch KP (1995). "Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene". Journal of Neural Transmission. General Section. 102 (3): 247–54. doi:10.1007/BF01281159. PMID   8788073. S2CID   8474414.
  13. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, Lesch KP (June 1996). "Allelic variation of human serotonin transporter gene expression". Journal of Neurochemistry. 66 (6): 2621–4. doi:10.1046/j.1471-4159.1996.66062621.x. PMID   8632190. S2CID   42037860.
  14. Collier DA, Stöber G, Li T, Heils A, Catalano M, Di Bella D, Arranz MJ, Murray RM, Vallada HP, Bengel D, Müller CR, Roberts GW, Smeraldi E, Kirov G, Sham P, Lesch KP (December 1996). "A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders". Molecular Psychiatry. 1 (6): 453–60. PMID   9154246.
  15. Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, Reith ME, Wang DN (September 2007). "LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake". Science. 317 (5843): 1390–3. Bibcode:2007Sci...317.1390Z. doi:10.1126/science.1147614. PMC   3711652 . PMID   17690258.
  16. Sinning S, Musgaard M, Jensen M, Severinsen K, Celik L, Koldsø H, Meyer T, Bols M, Jensen HH, Schiøtt B, Wiborg O (March 2010). "Binding and orientation of tricyclic antidepressants within the central substrate site of the human serotonin transporter". The Journal of Biological Chemistry. 285 (11): 8363–74. doi: 10.1074/jbc.M109.045401 . PMC   2832986 . PMID   19948720.
  17. Andersen J, Taboureau O, Hansen KB, Olsen L, Egebjerg J, Strømgaard K, Kristensen AS (April 2009). "Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants". The Journal of Biological Chemistry. 284 (15): 10276–84. doi: 10.1074/jbc.M806907200 . PMC   2665081 . PMID   19213730.
  18. Koldsø H, Severinsen K, Tran TT, Celik L, Jensen HH, Wiborg O, Schiøtt B, Sinning S (February 2010). "The two enantiomers of citalopram bind to the human serotonin transporter in reversed orientations". Journal of the American Chemical Society. 132 (4): 1311–22. doi:10.1021/ja906923j. PMID   20055463.
  19. Penmatsa A, Wang KH, Gouaux E (November 2013). "X-ray structure of dopamine transporter elucidates antidepressant mechanism". Nature. 503 (7474): 85–90. Bibcode:2013Natur.503...85P. doi:10.1038/nature12533. PMC   3904663 . PMID   24037379.
  20. Tamagnan G, Alagille D, Fu X, Kula NS, Baldessarini RJ, Innis RB, Baldwin RM (February 2005). "Synthesis and monoamine transporter affinity of new 2beta-carbomethoxy-3beta-[4-(substituted thiophenyl)]phenyltropanes: discovery of a selective SERT antagonist with picomolar potency". Bioorganic & Medicinal Chemistry Letters. 15 (4): 1131–3. doi:10.1016/j.bmcl.2004.12.014. PMID   15686927.
  21. Mattson RJ, Catt JD, Denhart DJ, Deskus JA, Ditta JL, Higgins MA, Marcin LR, Sloan CP, Beno BR, Gao Q, Cunningham MA, Mattson GK, Molski TF, Taber MT, Lodge NJ (September 2005). "Conformationally restricted homotryptamines. 2. Indole cyclopropylmethylamines as selective serotonin reuptake inhibitors". Journal of Medicinal Chemistry. 48 (19): 6023–34. doi:10.1021/jm0503291. PMID   16162005.
  22. Dalton King H, Denhart DJ, Deskus JA, Ditta JL, Epperson JR, Higgins MA, Kung JE, Marcin LR, Sloan CP, Mattson GK, Molski TF, Krause RG, Bertekap RL, Lodge NJ, Mattson RJ, Macor JE (October 2007). "Conformationally restricted homotryptamines. Part 4: Heterocyclic and naphthyl analogs of a potent selective serotonin reuptake inhibitor". Bioorganic & Medicinal Chemistry Letters. 17 (20): 5647–51. doi:10.1016/j.bmcl.2007.07.083. PMID   17766113.
  23. King HD, Meng Z, Deskus JA, Sloan CP, Gao Q, Beno BR, Kozlowski ES, Lapaglia MA, Mattson GK, Molski TF, Taber MT, Lodge NJ, Mattson RJ, Macor JE (November 2010). "Conformationally restricted homotryptamines. Part 7: 3-cis-(3-aminocyclopentyl)indoles as potent selective serotonin reuptake inhibitors". Journal of Medicinal Chemistry. 53 (21): 7564–72. doi:10.1021/jm100515z. PMID   20949929.
  24. Dallanoce C, Canovi M, Matera C, Mennini T, De Amici M, Gobbi M, De Micheli C (November 2012). "A novel spirocyclic tropanyl-Δ²-isoxazoline derivative enhances citalopram and paroxetine binding to serotonin transporters as well as serotonin uptake". Bioorganic & Medicinal Chemistry. 20 (21): 6344–55. doi:10.1016/j.bmc.2012.09.004. PMID   23022052.
  25. Niello M, Cintulova D, Hellsberg E, Jäntsch K, Holy M, Ayatollahi LH, Cozzi NV, Freissmuth M, Sandtner W, Ecker GF, Mihovilovic MD, Sitte HH (2019). "para-Trifluoromethyl-methcathinone is an allosteric modulator of the serotonin transporter". Neuropharmacology. 161: 107615. doi:10.1016/j.neuropharm.2019.04.021. PMID   31028773. S2CID   128363044.
  26. Dahlin A, Royall J, Hohmann JG, Wang J (May 2009). "Expression profiling of the solute carrier gene family in the mouse brain". The Journal of Pharmacology and Experimental Therapeutics. 329 (2): 558–70. doi:10.1124/jpet.108.149831. PMC   2672879 . PMID   19179540.
  27. 1 2 3 Nakamura M, Ueno S, Sano A, Tanabe H (January 2000). "The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants". Molecular Psychiatry. 5 (1): 32–8. doi:10.1038/sj.mp.4000698. PMID   10673766. S2CID   12459610.
  28. 1 2 Murphy DL, Lesch KP (February 2008). "Targeting the murine serotonin transporter: insights into human neurobiology". Nature Reviews. Neuroscience. 9 (2): 85–96. doi:10.1038/nrn2284. PMID   18209729. S2CID   7563088.
  29. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, Lesch KP (June 1996). "Allelic variation of human serotonin transporter gene expression". Journal of Neurochemistry. 66 (6): 2621–4. doi:10.1046/j.1471-4159.1996.66062621.x. PMID   8632190. S2CID   42037860.
  30. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (November 1996). "Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region". Science. 274 (5292): 1527–31. Bibcode:1996Sci...274.1527L. doi:10.1126/science.274.5292.1527. PMID   8929413. S2CID   35503987.
  31. Wendland JR, Martin BJ, Kruse MR, Lesch KP, Murphy DL (March 2006). "Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531". Molecular Psychiatry. 11 (3): 224–6. doi:10.1038/sj.mp.4001789. PMID   16402131. S2CID   26655014.
  32. 1 2 Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR (June 2005). "5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression". Nature Neuroscience. 8 (6): 828–34. doi:10.1038/nn1463. PMID   15880108. S2CID   1864631.
  33. 1 2 Huang CH, Santangelo SL (September 2008). "Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis". American Journal of Medical Genetics Part B. 147B (6): 903–13. doi:10.1002/ajmg.b.30720. PMID   18286633. S2CID   9491697.
  34. Nierenberg AA (September 2009). "The long tale of the short arm of the promoter region for the gene that encodes the serotonin uptake protein". CNS Spectrums. 14 (9): 462–3. doi:10.1017/s1092852900023506. PMID   19890228. S2CID   24236284.
  35. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (July 2003). "Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene". Science. 301 (5631): 386–9. Bibcode:2003Sci...301..386C. doi:10.1126/science.1083968. PMID   12869766. S2CID   146500484.
  36. Uher R, McGuffin P (February 2008). "The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis". Molecular Psychiatry. 13 (2): 131–46. doi:10.1038/sj.mp.4002067. PMID   17700575. S2CID   24432263.
  37. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR (June 2009). "Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis". JAMA. 301 (23): 2462–71. doi:10.1001/jama.2009.878. PMC   2938776 . PMID   19531786.
  38. Wendland JR, Moya PR, Kruse MR, Ren-Patterson RF, Jensen CL, Timpano KR, Murphy DL (March 2008). "A novel, putative gain-of-function haplotype at SLC6A4 associates with obsessive-compulsive disorder". Human Molecular Genetics. 17 (5): 717–23. doi: 10.1093/hmg/ddm343 . PMID   18055562.
  39. Ozaki N, Goldman D, Kaye WH, Plotnicov K, Greenberg BD, Lappalainen J, Rudnick G, Murphy DL (November 2003). "Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype". Molecular Psychiatry. 8 (11): 933–6. doi:10.1038/sj.mp.4001365. PMID   14593431. S2CID   2171955. News article:
  40. Delorme R, Betancur C, Wagner M, Krebs MO, Gorwood P, Pearl P, Nygren G, Durand CM, Buhtz F, Pickering P, Melke J, Ruhrmann S, Anckarsäter H, Chabane N, Kipman A, Reck C, Millet B, Roy I, Mouren-Simeoni MC, Maier W, Råstam M, Gillberg C, Leboyer M, Bourgeron T (December 2005). "Support for the association between the rare functional variant I425V of the serotonin transporter gene and susceptibility to obsessive compulsive disorder". Molecular Psychiatry. 10 (12): 1059–61. doi:10.1038/sj.mp.4001728. PMC   2547479 . PMID   16088327.
  41. Stephen Wheless. ""The OCD Gene" Popular Press v. Scientific Literature: Is SERT Responsible for Obsessive-Compulsive Disorder?". Davidson College . Retrieved 12 June 2008.
  42. Fan JB, Sklar P (October 2005). "Meta-analysis reveals association between serotonin transporter gene STin2 VNTR polymorphism and schizophrenia". Molecular Psychiatry. 10 (10): 928–38, 891. doi:10.1038/sj.mp.4001690. PMID   15940296. S2CID   29240701.
  43. Anguelova M, Benkelfat C, Turecki G (June 2003). "A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders". Molecular Psychiatry. 8 (6): 574–91. doi: 10.1038/sj.mp.4001328 . PMID   12851635.
  44. Kazantseva AV, Gaysina DA, Faskhutdinova GG, Noskova T, Malykh SB, Khusnutdinova EK (August 2008). "Polymorphisms of the serotonin transporter gene (5-HTTLPR, A/G SNP in 5-HTTLPR, and STin2 VNTR) and their relation to personality traits in healthy individuals from Russia". Psychiatric Genetics. 18 (4): 167–76. doi:10.1097/YPG.0b013e328304deb8. PMID   18628678. S2CID   7423923.
  45. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (November 2000). "Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB". European Journal of Nuclear Medicine. 27 (11): 1719–22. doi:10.1007/s002590000365. PMID   11105830. S2CID   18932686.
  46. Brücke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I (1993). "SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain". Journal of Neural Transmission. General Section. 94 (2): 137–46. doi:10.1007/BF01245007. PMID   8110440. S2CID   22034290.
  47. Brust P, Hesse S, Muller U, Szabo Z (February 2006). "Neuroimaging of the Serotonin Transporter Possibilities and Pitfalls" (PDF). Current Psychiatry Reviews. 2 (1): 111–149. doi:10.2174/157340006775101508. Archived from the original (PDF) on 23 July 2011.
  48. Takano A, Arakawa R, Hayashi M, Takahashi H, Ito H, Suhara T (September 2007). "Relationship between neuroticism personality trait and serotonin transporter binding". Biological Psychiatry. 62 (6): 588–92. doi:10.1016/j.biopsych.2006.11.007. PMID   17336939. S2CID   41664835.