5-Methoxytryptamine

Last updated
5-Methoxytryptamine
5-methoxytryptamine.png
Clinical data
Other names5-MeO-T; 5-OMe-T; 5-MeOT; 5-MeO-TPA; 5-MT; MT; 5-Hydroxytryptamine methyl ether; Serotonin methyl ether; O-Methylserotonin; O-Methyl-5-HT; Mexamine; Meksamin; Mekasamin; PAL-234
Routes of
administration
Orally inactive [1] [2]
Drug class Non-selective serotonin receptor agonist; Serotonin 5-HT2A receptor agonist; Serotonergic psychedelic; Hallucinogen
Pharmacokinetic data
Metabolism MAO-A Tooltip Monoamine oxidase A
Identifiers
  • 2-(5-Methoxy-1H-indol-3-yl)ethanamine
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.009.231 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C11H14N2O
Molar mass 190.246 g·mol−1
3D model (JSmol)
  • O(c1cc2c(cc1)[nH]cc2CCN)C
  • InChI=1S/C11H14N2O/c1-14-9-2-3-11-10(6-9)8(4-5-12)7-13-11/h2-3,6-7,13H,4-5,12H2,1H3 Yes check.svgY
  • Key:JTEJPPKMYBDEMY-UHFFFAOYSA-N Yes check.svgY
   (verify)

5-Methoxytryptamine (5-MT, 5-MeO-T, or 5-OMe-T), also known as serotonin methyl ether or O-methylserotonin and as mexamine, is a tryptamine derivative closely related to the neurotransmitters serotonin and melatonin. [3] It has been shown to occur naturally in the body in low levels, especially in the pineal gland. [3] [4] It is formed via O-methylation of serotonin or N-deacetylation of melatonin. [3] [5] [4]

Contents

5-MT is a highly potent and non-selective serotonin receptor agonist [6] [7] [8] [9] and shows serotonergic psychedelic-like effects in animals. [10] However, it is inactive in humans, at least orally, likely due to rapid metabolism by monoamine oxidase (MAO). [1] [2] The levels and effects of 5-MT are dramatically potentiated by monoamine oxidase inhibitors (MAOIs) in animals. [11] [12] [13] [14] [15] [16]

Biosynthesis

5-MT can be formed by O-methylation of serotonin mediated by hydroxyindole O-methyltransferase (HIOMT) or by N-deacetylation of melatonin. [3] [5] It is also a precursor of 5-MeO-DMT in some species. [3]

Pharmacology

Pharmacodynamics

5-MT activities
Target Affinity (Ki, nM)
5-HT1A 3.2 (Ki)
183–535 (EC50 Tooltip half-maximal effective concentration
66–135% (Emax Tooltip maximal efficacy)
5-HT1B 0.75–38
5-HT1D 1.7–34
5-HT1E 3,151
5-HT1F 1,166
5-HT2A 4.8–724 (Ki)
0.503 (EC50)
119% (Emax)
5-HT2B 0.51–16
5-HT2C 45–943
5-HT3 >10,000 (non-human)
5-HT4 27–2,443
5-HT5A 98 (unknown)
5-HT6 18–88
5-HT7 0.5–5.0
MT1 >10,000
MT2 >10,000
SERT Tooltip Serotonin transporter4,000 (IC50 Tooltip half-maximal inhibitory concentration)
2,169 (EC50)
NET Tooltip Norepinephrine transporter>10,000 (IC50)
>10,000 (EC50)
DAT Tooltip Dopamine transporter>10,000 (IC50)
11,031 (EC50)
Notes: The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified. Refs: [6] [7] [8] [9] [17]

5-MT acts as an agonist of the serotonin 5-HT1, 5-HT2, 5-HT4, 5-HT6, and 5-HT7 receptors. [18] [19] [20] [21] [22] [23] [24]

It is an extremely potent serotonin 5-HT2A receptor agonist in vitro , with an EC50 Tooltip half-maximal effective concentration of 0.503 nM. [8] This was more potent than any other tryptamine evaluated in two large series of compounds. [8] [9] For comparison, 5-MeO-DMT had an EC50 of 3.87 nM (7.7-fold lower) and dimethyltryptamine (DMT) had an EC50 of 38.3 nM (76-fold lower). [9]

5-MT has been said to be 25- and 400-fold selective for the serotonin 5-HT2B receptor over the serotonin 5-HT2A and 5-HT2C receptors, respectively. [25]

5-MT, in contrast to the closely related melatonin, has no affinity for the melatonin receptors. [26] [27] However, it may be converted into melatonin in the body, and hence may indirectly act as a melatonin receptor agonist. [3] [5]

5-MT shows dramatically reduced activity as a monoamine releasing agent compared to tryptamine and serotonin. [8]

Effects in animals and humans

5-MT dose-dependently induces the head-twitch response, a behavioral proxy of psychedelic effects, in rodents, and this effect is reversed by serotonin 5-HT2A receptor antagonists. [10] [28] [29] [30] [31] [15] [16] As such, it may be a hallucinogen in humans. [32] 5-MT is only briefly mentioned in several places in Alexander Shulgin's TiHKAL and its psychoactive effects are not described. [33] [34] Besides psychedelic-like effects, 5-MT produces a "hyperactivity syndrome" in rodents. [3] [11] [35] It produces various other effects in animals as well. [3]

Pharmacokinetics

Distribution

5-MT is able to cross the blood–brain barrier and enter the central nervous system with peripheral administration in animals. [11]

Metabolism

5-MT is metabolized by deamination by monoamine oxidase (MAO), specifically monoamine oxidase A (MAO-A) and to a much lesser extent by monoamine oxidase B (MAO-B). [12] [13] [14] [36]

Brain levels of 5-MT following central administration of 5-MT in rats were potentiated by 20-fold by the MAO-A inhibitor clorgyline and by 5.5-fold by the MAO-B inhibitor selegiline. [13] [12] Similarly, levels of serotonin and phenethylamine were also greatly elevated by these drugs. [12] [13] In accordance with the potentiation of brain levels of 5-MT by MAOIs, the behavioral effects of centrally administered 5-MT in rats, for instance in the conditioned avoidance response test, are markedly enhanced by MAOIs, including by the dual MAO-A and MAO-B inhibitor iproniazid and by clorgyline and selegiline. [13]

Similarly to rat findings, pineal gland levels of endogenous 5-MT are dramatically elevated by the MAO-A inhibitor clorgyline and by the dual MAO-A and MAO-B inhibitor pargyline in hamsters, and plasma levels of exogenous 5-MT are greatly elevated by these MAOIs as well. [14] Conversely, selegiline was ineffective in elevating brain or plasma 5-MT levels in hamsters. [14]

The non-selective MAO-A and MAO-B inhibitor tranylcypromine has been frequently used to potentiate the effects of 5-MT in animal studies. [11] [29] [31] [15] [16]

5-MT is orally inactive in humans presumably due to rapid metabolism by MAO-A. [1] [2]

Metabolites of 5-MT include 5-methoxyindole-3-acetic acid (5-MIAA) and 5-methoxytryptophol. [3] [14] It may also be metabolized into melatonin. [3] [5]

Chemistry

5-MT, also known as 5-methoxytryptamine or as 5-hydroxytrypamine O-methyl ether, is a substituted tryptamine and a derivative of serotonin (5-hydroxytryptamine) and precursor of melatonin (N-acetyl-5-methoxytryptamine). [37]

It is closely related to other 5-methoxylated tryptamines such as 5-MeO-NMT, 5-MeO-DMT, 5-MeO-DPT, 5-MeO-DiPT, 5-MeO-MiPT, 5-MeO-DALT, and 5-MeO-AMT. 5-MeO-AMT is orally active in humans, in contrast to 5-MT, and could be thought of as a sort of orally active form of 5-MT. [2] Some other notable analogues of 5-MT include tryptamine, 2-methyl-5-hydroxytryptamine, 5-benzyloxytryptamine, 5-carboxamidotryptamine, 5-methyltryptamine, 5-(nonyloxy)tryptamine, α-methyl-5-hydroxytryptamine, acetryptine (5-acetyltryptamine), and isamide (N-chloroacetyl-5-methoxytryptamine), among others.

The predicted log P of 5-MT is 0.5 to 1.41. [37] [38] [39]

Related Research Articles

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

α-Methyltryptamine Chemical compound

α-Methyltryptamine is a psychedelic, stimulant, and entactogen drug of the tryptamine family. It was originally developed as an antidepressant at Upjohn in the 1960s, and was used briefly as an antidepressant in the Soviet Union under the brand name Indopan or Indopane before being discontinued.

<span class="mw-page-title-main">Tryptamine</span> Metabolite of the amino acid tryptophan

Tryptamine is an indolamine metabolite of the essential amino acid tryptophan. The chemical structure is defined by an indole—a fused benzene and pyrrole ring, and a 2-aminoethyl group at the second carbon. The structure of tryptamine is a shared feature of certain aminergic neuromodulators including melatonin, serotonin, bufotenin and psychedelic derivatives such as dimethyltryptamine (DMT), psilocybin, psilocin and others.

<span class="mw-page-title-main">5-MeO-DMT</span> Chemical compound

5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), also known as O-methylbufotenin or mebufotenin, is a naturally occurring psychedelic of the tryptamine family. It is found in a wide variety of plant species, and is also secreted by the glands of at least one toad species, the Colorado River toad. It may occur naturally in humans as well. Like its close relatives dimethyltryptamine (DMT) and bufotenin (5-HO-DMT), it has been used as an entheogen in South America. Slang terms include Five-methoxy, the power, bufo, and toad venom.

<span class="mw-page-title-main">5-MeO-AMT</span> Chemical compound

5-MeO-αMT, or 5-methoxy-α-methyltryptamine, also known as α,O-dimethylserotonin (Alpha-O), is a serotonergic psychedelic of the tryptamine family. It is a derivative of α-methyltryptamine (αMT) and an analogue of 5-MeO-DMT.

α-Ethyltryptamine Chemical compound

α-Ethyltryptamine, also known as etryptamine, is an entactogen and stimulant drug of the tryptamine family. It was originally developed and marketed as an antidepressant under the brand name Monase by Upjohn in the 1960s before being withdrawn due to toxicity.

<span class="mw-page-title-main">5-MeO-MiPT</span> Chemical compound

5-MeO-MiPT is a psychedelic and hallucinogen of the tryptamine family. It used by some as an entheogen. It has structural and pharmacodynamic properties similar to the drugs 5-MeO-DiPT, DiPT, and MiPT. It is commonly used as a "substitute" for 5-MeO-DiPT because of the very similar structure and effects.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<i>N</i>-Acetylserotonin Chemical compound

N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects.

<span class="mw-page-title-main">5-Fluoro-AMT</span> Chemical compound

5-Fluoro-α-methyltryptamine, also known as PAL-212 or PAL-544, is a putative stimulant, entactogen, and psychedelic tryptamine derivative related to α-methyltryptamine (αMT).

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq/G11-protein coupled, leading to downstream activation of phospholipase C.

α-Methylserotonin Chemical compound

α-Methylserotonin (αMS), also known as α-methyl-5-hydroxytryptamine (α-methyl-5-HT) or 5-hydroxy-α-methyltryptamine (5-HO-αMT), is a tryptamine derivative closely related to the neurotransmitter serotonin (5-HT). It acts as a non-selective serotonin receptor agonist and has been used extensively in scientific research to study the function of the serotonin system.

<span class="mw-page-title-main">Serotonin–dopamine releasing agent</span> Drug that releases serotonin and dopamine in the brain

A serotonin–dopamine releasing agent (SDRA) is a type of drug which induces the release of serotonin and dopamine in the body and/or brain.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or simply tryptamines, also known as serotonin analogues (i.e., 5-hydroxytryptamine analogues), are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">5-Chloro-αMT</span> Chemical compound

5-Chloro-α-methyltryptamine (5-Chloro-αMT), also known as PAL-542, is a tryptamine derivative related to α-methyltryptamine (αMT) and one of only a few known serotonin–dopamine releasing agents (SDRAs). It is also a potent serotonin 5-HT2A receptor agonist and hence may be a serotonergic psychedelic. The drug has been investigated in animals as a potential treatment for cocaine dependence.

<span class="mw-page-title-main">Acetryptine</span> Drug

Acetryptine (INN), also known as 5-acetyltryptamine (5-AT), is a drug described as an antihypertensive agent which was never marketed. Structurally, acetryptine is a substituted tryptamine, and is closely related to other substituted tryptamines like serotonin (5-hydroxytryptamine). It was developed in the early 1960s. The binding of acetryptine to serotonin receptors does not seem to have been well-investigated, although it was assessed at the 5-HT1A and 5-HT1D receptors and found to bind to them with high affinity. The drug may also act as a monoamine oxidase inhibitor (MAOI); specifically, as an inhibitor of MAO-A.

<span class="mw-page-title-main">5-Fluoro-AET</span> Chemical compound

5-Fluoro-AET, also known as 5-fluoro-α-ethyltryptamine or by the code name PAL-545, is a substituted tryptamine derivative which acts as a serotonin–dopamine releasing agent (SDRA) and as an agonist of the serotonin 5-HT2A receptor.

<span class="mw-page-title-main">Neurotransmitter prodrug</span> A prodrug of a neurotransmitter

A neurotransmitter prodrug, or neurotransmitter precursor, is a drug that acts as a prodrug of a neurotransmitter. A variety of neurotransmitter prodrugs have been developed and used in medicine. They can be useful when the neurotransmitter itself is not suitable for use as a pharmaceutical drug owing to unfavorable pharmacokinetic or physicochemical properties, for instance high susceptibility to metabolism, short elimination half-life, or lack of blood–brain barrier permeability. Besides their use in medicine, neurotransmitter prodrugs have also been used as recreational drugs in some cases.

<span class="mw-page-title-main">5-Chloro-αET</span> Pharmaceutical compound

5-Chloro-αET, or 5-chloro-AET, also known as 5-chloro-α-ethyltryptamine, is a serotonergic agent of the tryptamine and α-alkyltryptamine families. It is the derivative of α-ethyltryptamine with a 5-chloro substitution. Analogues of 5-chloro-αET include 5-fluoro-αET, 5-chloro-αMT, and 5-fluoro-αMT.

<span class="mw-page-title-main">5-Methyltryptamine</span> Pharmaceutical compound

5-Methyltryptamine is a non-selective serotonin receptor agonist and serotonin releasing agent of the tryptamine family that has been used in scientific research. It is related to other 5-substituted tryptamines such as serotonin and 5-methoxytryptamine (5-MeO-T). The compound is also a positional isomer of N-methyltryptamine (NMT).

References

  1. 1 2 3 Nichols DE (2012). "Structure–activity relationships of serotonin 5‐HT 2A agonists". Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 1 (5): 559–579. doi: 10.1002/wmts.42 . ISSN   2190-460X.
  2. 1 2 3 4 Nichols DE (2018). "Chemistry and Structure-Activity Relationships of Psychedelics". Curr Top Behav Neurosci. 36: 1–43. doi:10.1007/7854_2017_475. PMID   28401524.
  3. 1 2 3 4 5 6 7 8 9 10 Pévet P (1983). "Is 5-methoxytryptamine a pineal hormone?". Psychoneuroendocrinology. 8 (1): 61–73. doi:10.1016/0306-4530(83)90041-0. PMID   6136058.
  4. 1 2 Galzin AM, Eon MT, Esnaud H, Lee CR, Pévet P, Langer SZ (1988). "Day-night rhythm of 5-methoxytryptamine biosynthesis in the pineal gland of the golden hamster (Mesocricetus auratus)". J. Endocrinol. 118 (3): 389–397. doi:10.1677/joe.0.1180389. PMID   2460575.
  5. 1 2 3 4 Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (August 2016). "On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species". J Pineal Res. 61 (1): 27–40. doi:10.1111/jpi.12336. PMID   27112772.
  6. 1 2 "PDSP Database". UNC (in Zulu). Retrieved 3 December 2024.
  7. 1 2 Liu T. "BindingDB BDBM82087 2-(5-methoxy-1H-indol-3-yl)ethanamine::5-MT::5-Methoxytryptamine hydrochloride::CAS_66-83-1::tryptamine, 5-Methoxy". BindingDB. Retrieved 3 December 2024.
  8. 1 2 3 4 5 Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB (October 2014). "Alpha-ethyltryptamines as dual dopamine-serotonin releasers". Bioorg Med Chem Lett. 24 (19): 4754–4758. doi:10.1016/j.bmcl.2014.07.062. PMC   4211607 . PMID   25193229.
  9. 1 2 3 4 Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (October 2014). "Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes". Psychopharmacology (Berl). 231 (21): 4135–4144. doi:10.1007/s00213-014-3557-7. PMC   4194234 . PMID   24800892.
  10. 1 2 Przegaliński E, Zebrowska-Lupina I, Wójcik A, Kleinrok Z (1977). "5-Methoxytryptamine-induced head twitches in rats". Pol J Pharmacol Pharm. 29 (3): 253–261. PMID   267911.
  11. 1 2 3 4 Green AR, Hughes JP, Tordoff AF (August 1975). "The concentration of 5-methoxytryptamine in rat brain and its effects on behaviour following its peripheral injection". Neuropharmacology. 14 (8): 601–606. doi:10.1016/0028-3908(75)90127-6. PMID   126386.
  12. 1 2 3 4 Prozialek WC, Vogel WH (February 1978). "Deamination of 5-methoxytryptamine, serotonin and phenylethylamine by rat MAO in vitro and in vivo". Life Sci. 22 (7): 561–569. doi:10.1016/0024-3205(78)90334-x. PMID   272480.
  13. 1 2 3 4 5 Prozialeck WC, Vogel WH (February 1979). "MAO inhibition and the effects of centrally administered LSD, serotonin, and 5-methoxytryptamine on the conditioned avoidance response in rats". Psychopharmacology (Berl). 60 (3): 309–310. doi:10.1007/BF00426673. PMID   108709. In contrast, MAO inhibition greatly increased brain levels of 5-HT and 5-MT (Prozialeck and Vogel, 1978). For instance, clorgyline and deprenyl increased brain levels of 5-HT 8.5-fold and 4.4-fold and of 5-MT 20-fold and 5-fold, respectively.
  14. 1 2 3 4 5 Raynaud F, Pévet P (February 1991). "5-Methoxytryptamine is metabolized by monoamine oxidase A in the pineal gland and plasma of golden hamsters". Neurosci Lett. 123 (2): 172–174. doi:10.1016/0304-3940(91)90923-h. PMID   2027530.
  15. 1 2 3 Vetulani J, Byrska B, Reichenberg K (1979). "Head twitches produced by serotonergic drugs and opiates after lesion of the mesostriatal serotonergic system of the rat". Pol J Pharmacol Pharm. 31 (4): 413–423. PMID   316525.
  16. 1 2 3 Kolasa K, Kleinrok Z, Rajtar G, Juszkiewicz M (1984). "Effects of histamine and H1 and H2-receptor antagonists on wet-dog-shake episodes in rats induced with tranylcypromine and 5-methoxytryptamine". Acta Physiol Pol. 35 (3): 225–230. PMID   6152672.
  17. Volk B, Nagy BJ, Vas S, Kostyalik D, Simig G, Bagdy G (2010). "Medicinal chemistry of 5-HT5A receptor ligands: a receptor subtype with unique therapeutical potential". Curr Top Med Chem. 10 (5): 554–578. doi:10.2174/156802610791111588. PMID   20166946.
  18. Wu PH, Gurevich N, Carlen PL (1988). "Serotonin-1A receptor activation in hippocampal CA1 neurons by 8-hydroxy-2-(di-n-propylamino)tetralin, 5-methoxytryptamine and 5-hydroxytryptamine". Neurosci. Lett. 86 (1): 72–76. doi:10.1016/0304-3940(88)90185-1. PMID   2966313. S2CID   21620262.
  19. Yamada J, Sugimoto Y, Yoshikawa T, Horisaka K (1997). "Hyperglycemia induced by the 5-HT receptor agonist, 5-methoxytryptamine, in rats: involvement of the peripheral 5-HT2A receptor". Eur J Pharmacol. 323 (2–3): 235–240. doi:10.1016/S0014-2999(97)00029-0. PMID   9128844.
  20. Amemiya N, Hatta S, Takemura H, Ohshika H (1996). "Characterization of the contractile response induced by 5-methoxytryptamine in rat stomach fundus strips". Eur J Pharmacol. 318 (2–3): 403–409. doi:10.1016/S0014-2999(96)00777-7. PMID   9016931.
  21. Craig DA, Eglen RM, Walsh LK, Perkins LA, Whiting RL, Clarke DE (1990). "5-Methoxytryptamine and 2-methyl-5-hydroxytryptamine-induced desensitization as a discriminative tool for the 5-HT3 and putative 5-HT4 receptors in guinea pig ileum". Naunyn-Schmiedeberg's Arch Pharmacol. 342 (1): 9–16. doi:10.1007/bf00178965. PMID   2402303. S2CID   24743785.
  22. Boess FG, Monsma Jr FJ, Carolo C, Meyer V, Rudler A, Zwingelstein C, Sleight AJ (1997). "Functional and radioligand binding characterization of rat 5-HT6 receptors stably expressed in HEK293 cells". Neuropharmacology. 36 (4–5): 713–720. doi:10.1016/S0028-3908(97)00019-1. PMID   9225298. S2CID   41813873.
  23. Hemedah M, Coupar IM, Mitchelson FJ (1999). "[3H]-Mesulergine labels 5-HT7 sites in rat brain and guinea-pig ileum but not rat jejunum". Br J Pharmacol. 126 (1): 179–188. doi:10.1038/sj.bjp.0702293. PMC   1565797 . PMID   10051134.
  24. Glennon RA, Dukat M, Westkaemper RB (2000-01-01). "Serotonin Receptor Subtypes and Ligands". American College of Neurophyscopharmacology. Archived from the original on 21 April 2008. Retrieved 2008-04-11.
  25. Encyclopedia of Signaling Molecules. Cham: Springer International Publishing. 2018. doi:10.1007/978-3-319-67199-4. ISBN   978-3-319-67198-7. 1-Structure and properties of 5-HT2B receptors: 1.1-Selective agonists: [...] - 5-Methoxytryptamine is also 25- and 400-fold selective over the 5-HT2A and 5-HT2C receptor sites, respectively.
  26. Zlotos DP (2012). "Recent progress in the development of agonists and antagonists for melatonin receptors". Curr Med Chem. 19 (21): 3532–3549. doi:10.2174/092986712801323153. PMID   22680635.
  27. Zlotos DP (2014). "Development of Agonists and Antagonists for Melatonin Receptors". Melatonin and Melatonergic Drugs in Clinical Practice. New Delhi: Springer India. p. 97–116. doi:10.1007/978-81-322-0825-9_7. ISBN   978-81-322-0824-2.
  28. Nakamura M, Fukushima H (April 1978). "Effects of reserpine, para-chlorophenylalanine, 5,6-dihydroxytryptamine and fludiazepam on the head twitches induced by 5-hydroxytryptamine or 5-methoxytryptamine in mice". J Pharm Pharmacol. 30 (4): 254–256. doi:10.1111/j.2042-7158.1978.tb13219.x. PMID   24719.
  29. 1 2 Przegaliński E, Baran L, Palider W, Bigajska K (1978). "On the central antiserotonin activity of benzoctamine and opipramol". Pol J Pharmacol Pharm. 30 (6): 781–790. PMID   582625.
  30. Baran L, Maj J, Rogóz Z, Skuza G (1979). "On the central antiserotonin action of trazodone". Pol J Pharmacol Pharm. 31 (1): 25–33. PMID   482164.
  31. 1 2 Przegaliński E, Baran L, Palider W, Siwanowicz J (April 1979). "The central action of pizotifen". Psychopharmacology (Berl). 62 (3): 295–300. doi:10.1007/BF00431961. PMID   111296.
  32. De Montigny C, Aghajanian GK (1977). "Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors: A comparative iontophoretic study with LSD and serotonin". Neuropharmacology. 16 (12): 811–818. doi:10.1016/0028-3908(77)90142-3.
  33. Shulgin A (1997). TiHKAL: The Continuation (PDF). Transform Press. ISBN   978-0-9630096-9-2 . Retrieved 2 November 2024. One of its most broadly studied properties is that of protecting an experimental animal against the damage of being exposed to radiation. It was unexpectedly observed that our essential and favorite neurotransmitter serotonin was every bit as effective as a radioprotective agent. In efforts to make this natural compound more accessible to the damaged animal, it was studied as the unacetylated Omethyl ether. This simple compound, 5-methoxytryptamine (5-MeO-T, or Mexamine) has been mentioned under the recipe for 5-MeO-DMT in its possible effects in potentiating CNS-active drugs. But here it deserves to be highlighted for its protection against radiation. Two structural modification directions of 5-methoxytryptamine have been thoroughly explored. [...] A A 5-MeO-T anti-radiation, not a psychedelic ? [...] Removal of both methyl groups from the nitrogen gives 5- methoxytryptamine (5-MeO-T) which has been explored most extensively by Soviet researchers as a treatment for exposure to radiation; this aspect of its action is discussed and expanded upon in the commentary under Melatonin. It is also known by the trade name Mexamine and has been looked at as a potentiator of centrally active drugs.
  34. "5-MeO-T - PiHKAL·info". Isomer Design. 11 November 2024. Retrieved 3 December 2024.
  35. Boullin DJ, Green AR (1976). "5-Methoxytryptamine: stimulation of 5-HT receptors mediating the rat hyperactivity syndrome and blood platelet aggregation". Adv Biochem Psychopharmacol. 15: 127–140. PMID   15408.
  36. Galzin AM, Langer SZ (July 1986). "Potentiation by deprenyl of the autoreceptor-mediated inhibition of [3H]-5-hydroxytryptamine release by 5-methoxytryptamine". Naunyn Schmiedebergs Arch Pharmacol. 333 (3): 330–333. doi:10.1007/BF00512949. PMID   3093900.
  37. 1 2 "5-Methoxytryptamine". PubChem. Retrieved 3 December 2024.
  38. "Metabolite 5-Methoxytryptamine". DrugBank Online. Retrieved 3 December 2024.
  39. "5-Methoxytryptamine". ChemSpider. 10 June 2024. Retrieved 3 December 2024.