Carbonyl sulfide

Last updated
Carbonyl sulfide
IUPAC names
Carbon oxide sulfide[ citation needed ]
Carbonyl sulfide [1]
Oxidosulfidocarbon [1]
3D model (JSmol)
ECHA InfoCard 100.006.674
EC Number 207-340-0
PubChem CID
Molar mass 60.075 g/mol
Appearancecolorless gas
Odor sulfide-like
Density 2.51 g/L
Melting point −138.8 °C (−217.8 °F; 134.3 K)
Boiling point −50.2 °C (−58.4 °F; 223.0 K)
0.376 g/100 mL (0 °C)
0.125 g/100 mL (25 °C)
Solubility very soluble in KOH, CS2
soluble in alcohol, toluene
-32.4·10−6 cm3/mol
0.65 D
41.5 J/mol K
231.5 J/mol K
-141.8 kJ/mol
Safety data sheet Carbonyl sulfide MSDS
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneHealth code 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasReactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no codeCarbonyl sulfide
Explosive limits 12-29%
Related compounds
Related compounds
Carbon dioxide
Carbon disulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Carbonyl sulfide is the chemical compound with the linear formula OCS. Normally written as COS as a chemical formula that does not imply its structure, it is a colourless flammable gas with an unpleasant odor.[ not verified in body ] It is a linear molecule consisting of a carbonyl group double bonded to a sulfur atom. Carbonyl sulfide can be considered to be intermediate between carbon dioxide and carbon disulfide, both of which are valence isoelectronic with it.

Chemical compound Substance composed of multiple elements

A chemical compound is a chemical substance composed of many identical molecules composed of atoms from more than one element held together by chemical bonds. Two atoms of the same element bonded in a molecule do not form a chemical compound, since this would require two different elements.

A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than are chemical names and structural formulas.

Gas One of the four fundamental states of matter

Gas is one of the four fundamental states of matter. A pure gas may be made up of individual atoms, elemental molecules made from one type of atom, or compound molecules made from a variety of atoms. A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colorless gas invisible to the human observer. The interaction of gas particles in the presence of electric and gravitational fields are considered negligible, as indicated by the constant velocity vectors in the image.


Carbonyl sulfide decomposes in the presence of humidity and bases to carbon dioxide and hydrogen sulfide. [2] [3] [4]

Carbon dioxide chemical compound

Carbon dioxide is a colorless gas with a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (410 ppm) by volume, having risen from pre-industrial levels of 280 ppm. Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations. However, at high concentrations, it has a sharp and acidic odor.

Hydrogen sulfide Poisonous, corrosive and flammable gas

Hydrogen sulfide is the chemical compound with the formula H
. It is a colorless chalcogen hydride gas with the characteristic foul odor of rotten eggs. It is very poisonous, corrosive, and flammable.

This compound is found to catalyze the formation of peptides from amino acids. This finding is an extension of the Miller–Urey experiment and it is suggested that carbonyl sulfide played a significant role in the origin of life. [5]

Catalysis chemical process

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which is not consumed in the catalyzed reaction and can continue to act repeatedly. Because of this, only very small amounts of catalyst are required to alter the reaction rate in principle.

Peptides are short chains of amino acids linked by peptide (amide) bonds. The simplest peptides are dipeptides, followed by tripeptides, tetrapeptides, etc. A polypeptide is a long, continuous, and unbranched peptide chain. Hence, peptides fall under the broad chemical classes of biological oligomers and polymers, alongside nucleic acids, oligosaccharides and polysaccharides, etc.

Amino acid Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain amine (-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to each amino acid. The key elements of an amino acid are carbon (C), hydrogen (H), oxygen (O), and nitrogen (N), although other elements are found in the side chains of certain amino acids. About 500 naturally occurring amino acids are known (though only 20 appear in the genetic code) and can be classified in many ways. They can be classified according to the core structural functional groups' locations as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, pH level, and side chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur, etc.). In the form of proteins, amino acid residues form the second-largest component (water is the largest) of human muscles and other tissues. Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis.


Carbonyl sulfide is the most abundant sulfur compound naturally present in the atmosphere, at 0.5±0.05  ppb , because it is emitted from oceans, volcanoes and deep sea vents. As such, it is a significant compound in the global sulfur cycle. Measurements on the Antarctica ice cores and from air trapped in snow above glaciers (firn air) have provided a detailed picture of OCS concentrations from 1640 to the present day and allow an understanding of the relative importance of anthropogenic and non-anthropogenic sources of this gas to the atmosphere. [6] Some carbonyl sulfide that is transported into the stratospheric sulfate layer is oxidized to sulfuric acid. [7] Sulfuric acid forms particulate which affects energy balance due to light scattering. [8] The long atmospheric lifetime of COS makes it the major source of stratospheric sulfate, though sulfur dioxide from volcanic activity can be significant too. [8] Carbonyl sulfide is also removed from the atmosphere by terrestrial vegetation by enzymes associated with the uptake of carbon dioxide during photosynthesis, and by hydrolysis in ocean waters. [9] [10] Loss processes, such as these, limit the persistence (or lifetime) of a molecule of COS in the atmosphere to a few years.

Volcano A rupture in the crust of a planetary-mass object that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

Sulfur cycle

The sulfur cycle is the collection of processes by which sulfur moves between rocks, waterways and living systems. Such biogeochemical cycles are important in geology because they affect many minerals. Biochemical cycles are also important for life because sulfur is an essential element, being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes.

Antarctica Polar continent in the Earths southern hemisphere

Antarctica is Earth's southernmost continent. It contains the geographic South Pole and is situated in the Antarctic region of the Southern Hemisphere, almost entirely south of the Antarctic Circle, and is surrounded by the Southern Ocean. At 14,200,000 square kilometres, it is the fifth-largest continent and nearly twice the size of Australia. At 0.00008 people per square kilometre, it is by far the least densely populated continent. About 98% of Antarctica is covered by ice that averages 1.9 km in thickness, which extends to all but the northernmost reaches of the Antarctic Peninsula.

The largest man-made sources of carbonyl sulfide release include its primary use as a chemical intermediate and as a byproduct of carbon disulfide production; however, it is also released from automobiles and their tire wear., [11] coal-fired power plants, coking ovens, biomass combustion, fish processing, combustion of refuse and plastics, petroleum manufacture, and manufacture of synthetic fibers, starch, and rubber. [2] The average total worldwide release of carbonyl sulfide to the atmosphere has been estimated at about 3 million tons/year, of which less than one third was related to human activity. [2] It is also a significant sulfur-containing impurity in synthesis gas.

Biomass Biological material used as a renewable energy source

Biomass is plant or animal material used for energy production, or in various industrial processes as raw material for a range of products. It can be purposely grown energy crops, wood or forest residues, waste from food crops, horticulture, food processing, animal farming, or human waste from sewage plants.

Carbonyl sulfide is present in foodstuffs, such as cheese and prepared vegetables of the cabbage family. Traces of COS are naturally present in grains and seeds in the range of 0.05–0.1 mg·kg−1.

Cheese a generic term for a diverse group of milk-based food products

Cheese is a dairy product derived from milk that is produced in a wide range of flavors, textures, and forms by coagulation of the milk protein casein. It comprises proteins and fat from milk, usually the milk of cows, buffalo, goats, or sheep. During production, the milk is usually acidified, and adding the enzyme rennet causes coagulation. The solids are separated and pressed into final form. Some cheeses have molds on the rind, the outer layer, or throughout. Most cheeses melt at cooking temperature.

Vegetable Edible plant or part of a plant, involved in cooking (opposed to Q3314483)

Vegetables are parts of plants that are consumed by humans or other animals as food. The original meaning is still commonly used and is applied to plants collectively to refer to all edible plant matter, including the flowers, fruits, stems, leaves, roots, and seeds. The alternate definition of the term vegetable is applied somewhat arbitrarily, often by culinary and cultural tradition. It may exclude foods derived from some plants that are fruits, flowers, nuts, and cereal grains, but include some fruits such as tomatoes and courgettes, flowers such as broccoli, and seeds such as pulses.

Cabbage A leafy green, red (purple), or white (pale green) biennial plant grown as an annual vegetable crop for its dense-leaved heads

Cabbage or headed cabbage is a leafy green, red (purple), or white biennial plant grown as an annual vegetable crop for its dense-leaved heads. It is descended from the wild cabbage, B. oleracea var. oleracea, and belongs to the "cole crops", meaning it is closely related to broccoli and cauliflower ; Brussels sprouts ; and savoy cabbage. Brassica rapa is commonly named Chinese, celery or napa cabbage and has many of the same uses. Cabbage is high in nutritional value.

Carbonyl sulfide has been observed in the interstellar medium (see also List of molecules in interstellar space), in comet 67P [12] and in the atmosphere of Venus, where, because of the difficulty of producing COS inorganically, it is considered a possible indicator of life. [13]


Carbonyl sulfide is used as an intermediate in the production of thiocarbamate herbicides. [3] Carbonyl sulfide is a potential alternative fumigant [14] to methyl bromide and phosphine. In some cases, however, residues on the grain result in flavours that are unacceptable to consumers, e.g. barley used for brewing. Carbonyl sulfide is readily converted to the gaseous signaling molecule hydrogen sulfide by carbonic anhydrase enzymes in plants and mammals. Because of this chemistry, the release of carbonyl sulfide from small organic molecules has been identified as a strategy for delivering hydrogen sulfide in different biological contexts. [15] In ecosystem science, carbonyl sulfide is increasingly often being used to describe the rate of the photosynthesis. [16]


Carbonyl sulfide was first described in 1841, [17] but was apparently mischaracterized as a mixture of carbon dioxide and hydrogen sulfide. Carl von Than first characterized the substance in 1867. It forms when carbon monoxide reacts with molten sulfur. This reaction reverses above 1200 K (930 °C; 1700 °F). A laboratory synthesis entails the reaction potassium thiocyanate and sulfuric acid. The resulting gas contains significant amounts of byproducts and requires purification. [18]

KSCN + 2 H
+ H
+ NH

Hydrolysis of isothiocyanates in hydrochloric acid solution also affords COS.


As of 1994, limited information existed on the acute toxicity of carbonyl sulfide in humans and in animals. [3] High concentrations (>1000 ppm) can cause sudden collapse, convulsions, and death from respiratory paralysis. [2] [3] Occasional fatalities have been reported, practically without local irritation or olfactory warning. [3] In tests with rats, 50% animals died when exposed to 1400 ppm of COS for 90 minutes, or at 3000 ppm for 9 minutes. [3] Limited studies with laboratory animals also suggest that continued inhalation of low concentrations (~50 ppm for up to 12 weeks) does not affect the lungs or the heart. [3]

Related Research Articles

Carbon monoxide chemical compound

Carbon monoxide (CO) is a colorless, odorless, and tasteless flammable gas that is slightly less dense than air. It is toxic to animals that use hemoglobin as an oxygen carrier when encountered in concentrations above about 35 ppm, although it is also produced in normal animal metabolism in low quantities, and is thought to have some normal biological functions. In the atmosphere, it is spatially variable and short lived, having a role in the formation of ground-level ozone.

The mesopause is the point of minimum temperature at the boundary between the mesosphere and the thermosphere atmospheric regions. Due to the lack of solar heating and very strong radiative cooling from carbon dioxide, the mesosphere is the coldest region on Earth with temperatures as low as -100 °C. The altitude of the mesopause for many years was assumed to be at around 85 km (53 mi.), but observations to higher altitudes and modeling studies in the last 10 years have shown that in fact the mesopause consists of two minima - one at about 85 km and a stronger minimum at about 100 km (62 mi).

Sulfur dioxide Chemical compound

Sulfur dioxide is the chemical compound with the formula SO
. It is a toxic gas responsible for the smell of burnt matches. It is released naturally by volcanic activity and is produced as a by-product of copper extraction and the burning of fossil fuels contaminated with sulfur compounds.

Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. Dimethyl sulfide is a flammable liquid that boils at 37 °C (99 °F) and has a characteristic disagreeable odor. It is a component of the smell produced from cooking of certain vegetables, notably maize, cabbage, beetroot and seafoods. It is also an indication of bacterial contamination in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate (DMSP), and is also produced by the bacterial metabolism of methanethiol.

Methacrolein, or methacrylaldehyde, is an unsaturated aldehyde. It is a clear, colorless, flammable liquid.

Criegee intermediate class of chemical compounds

A Criegee intermediate is a molecule containing the oxide of a carbonyl group. These chemicals may react with sulfur dioxide and nitrogen oxides in the earth's atmosphere, and are implicated in the formation of aerosols, which are an important factor in controlling global climate. Criegee intermediates are also an important source of OH. OH radicals are the most important oxidant in the troposphere, and are important in controlling air quality and pollution.

Carbon dioxide in Earths atmosphere Atmospheric constituent; greenhouse gas

Carbon dioxide is an important trace gas in Earth's atmosphere. It is an integral part of the carbon cycle, a biogeochemical cycle in which carbon is exchanged between the Earth's oceans, soil, rocks and the biosphere. Plants and other photoautotrophs use solar energy to produce carbohydrate from atmospheric carbon dioxide and water by photosynthesis. Almost all other organisms depend on carbohydrate derived from photosynthesis as their primary source of energy and carbon compounds. CO
absorbs and emits infrared radiation at wavelengths of 4.26 µm and 14.99 µm and consequently is a greenhouse gas that plays a significant role in influencing Earth's surface temperature through the greenhouse effect.

Carl von Than Austro-Hungarian chemist

Károly Antal Than de Apát - also called as Carl von Than - was a Hungarian chemist who discovered carbonyl sulfide in 1867.

Stratospheric sulfur aerosols sulfur-rich particles in the stratosphere

Stratospheric sulfur aerosols are sulfur-rich particles which exist in the stratosphere region of the Earth's atmosphere. The layer of the atmosphere in which they exist is known as the Junge layer, or simply the stratospheric aerosol layer. These particles consist of a mixture of sulfuric acid and water. They are created naturally, such as by photochemical decomposition of sulfur-containing gases, e.g. carbonyl sulfide. When present in high levels, e.g. after a strong volcanic eruption such as Mount Pinatubo, they produce a cooling effect, by reflecting sunlight, and by modifying clouds as they fall out of the stratosphere. This cooling may persist for a few years before the particles fall out.

Greenhouse gas Gas in an atmosphere that absorbs and emits radiation within the thermal infrared range

A greenhouse gas is a gas that absorbs and emits radiant energy within the thermal infrared range. Greenhouse gases cause the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor, carbon dioxide, methane, nitrous oxide and ozone. Without greenhouse gases, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). The atmospheres of Venus, Mars and Titan also contain greenhouse gases.

Stratospheric aerosol injection sulfur-rich particles in the stratosphere

The ability of stratospheric sulfate aerosols to create a global dimming effect has made them a possible candidate for use in solar radiation management climate engineering projects to limit the effect and impact of climate change due to rising levels of greenhouse gases. Delivery of precursor sulfide gases such as sulfuric acid, hydrogen sulfide or sulfur dioxide by artillery, aircraft and balloons has been proposed.

Life on Venus life on the planet Venus

The speculation of life currently existing on Venus decreased significantly since the early 1960s, when spacecraft began studying Venus and it became clear that the conditions on Venus are extreme compared to those on Earth.

Sulfanyl (HS), also known as the mercapto radical, hydrosulfide radical, or hydridosulfur, is a simple radical molecule consisting of one hydrogen and one sulfur atom. The radical appears in metabolism in organisms as H2S is detoxified. Sulfanyl is one of the top three sulfur-containing gasses in gas giants such as Jupiter and is very likely to be found in brown dwarfs and cool stars. It was originally discovered by Margaret N. Lewis and John U. White at the University of California in 1939. They observed molecular absorption bands around 325 nm belonging to the system designated by 2Σ+2Πi. They generated the radical by means of a radio frequency discharge in hydrogen sulfide. HS is formed during the degradation of hydrogen sulfide in the atmosphere of the Earth. This may be a deliberate action to destroy odours or a natural phenomenon.

The atmosphere is one of the Earth's major carbon reservoirs and an important component of the global carbon cycle, holding approximately 720 gigatons of carbon. Atmospheric carbon plays an important role in the greenhouse effect. The most important carbon compound in this respect is the gas carbon dioxide. Although it is a small percentage of the atmosphere, it plays a vital role in retaining heat in the atmosphere and thus in the greenhouse effect. Other gases with effects on the climate containing carbon in the atmosphere are methane and chlorofluorocarbons. Emissions by humans in the past 200 years have almost doubled the amount carbon dioxide in the atmosphere.

Cyanogen fluoride chemical compound

Cyanogen fluoride is an inorganic linear compound which consists of a fluorine in a single bond with carbon, and a nitrogen in a triple bond with carbon. It is a toxic and explosive gas at room temperature. It is used in organic synthesis and can be produced by pyrolysis of cyanuric fluoride or by fluorination of cyanogen.

Chemical cycling

Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space, and on many objects in space including the Earth. Active chemical cycling is known to occur in stars, many planets and natural satellites.

Sulfoxylic acid chemical compound

Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.


  1. 1 2 International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSCIUPAC. ISBN   0-85404-438-8. p. 292. Electronic version.
  2. 1 2 3 4 "Carbonyl Sulfide CASRN: 463-58-1". Hazardous Substances Data Bank. National Library of Medicine.
  3. 1 2 3 4 5 6 7 "Chemical Summary for Carbonyl Sulfide". U.S. Environmental Protection Agency.
  4. Protoschill-Krebs, G.; Wilhelm, C.; Kesselmeier, J. (1996). "Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA)". Atmospheric Environment. 30 (18): 3151–3156. Bibcode:1996AtmEn..30.3151P. doi:10.1016/1352-2310(96)00026-X.
  5. Leman L, Orgel L, Ghadiri MR (2004). "Carbonyl sulfide-mediated prebiotic formation of peptides". Science. 306 (5694): 283–6. Bibcode:2004Sci...306..283L. doi:10.1126/science.1102722. PMID   15472077.
  6. Montzka, S. A.; Aydin, M.; Battle, M.; Butler, J. H.; Saltzman, E. S.; Hall, B. D.; Clarke, A. D.; Mondeel, D.; Elkins, J. W. (2004). "A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice" (PDF). Journal of Geophysical Research. 109 (D18): 22302. Bibcode:2004JGRD..10922302M. doi:10.1029/2004JD004686. eid D22302.
  7. Crutzen, P. (1976). "The possible importance of COS for the sulfate layer of the stratosphere". Geophysical Research Letters. 3 (2): 73–76. Bibcode:1976GeoRL...3...73C. doi:10.1029/GL003i002p00073.
  8. 1 2 Seinfeld, J. (2006). Atmospheric Chemistry and Physics. London: J. Wiley. ISBN   978-1-60119-595-1.
  9. Kettle, A. J.; Kuhn, U.; von Hobe, M.; Kesselmeier, J.; Andreae, M. O. (2002). "Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks". Journal of Geophysical Research. 107 (D22): 4658. Bibcode:2002JGRD..107.4658K. doi:10.1029/2002JD002187.
  10. Montzka, S. A.; Calvert, P.; Hall, B. D.; Elkins, J. W.; Conway, T. J.; Tans, P. P.; Sweeney, C. (2007). "On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2". Journal of Geophysical Research. 112 (D9): 9302. Bibcode:2007JGRD..11209302M. doi:10.1029/2006JD007665. eid D09302.
  11. Pos W, Berreshein B (1993). "Automotive tire wear as a source for atmospheric OCS and CS2". Geophysical Research Letters. 1 (9): 815–818. Bibcode:1993GeoRL..20..815P. doi:10.1029/93GL00972.
  12. Rosetta Blog. "OMET'S FIREWORK DISPLAY AHEAD OF PERIHELION". European Space Agency. Retrieved 11 August 2015.
  13. Landis, G. A. (2003). "Astrobiology: the Case for Venus" (PDF). Journal of the British Interplanetary Society. 56 (7–8): 250–254. Bibcode:2003JBIS...56..250L.
  14. Bartholomaeus, Andrew; Haritos, Victoria (2005). "Review of the toxicology of carbonyl sulfide, a new grain fumigant". Food and Chemical Toxicology. 43 (12): 1687–1701. doi:10.1016/j.fct.2005.06.016. PMID   16139940.
  15. Steiger, Andrea K.; Pardue, Sibile; Kevil, Christopher G.; Pluth, Michael D. (2016-06-15). "Self-Immolative Thiocarbamates Provide Access to Triggered H2S Donors and Analyte Replacement Fluorescent Probes". Journal of the American Chemical Society. 138 (23): 7256–7259. doi:10.1021/jacs.6b03780. ISSN   0002-7863. PMC   4911618 . PMID   27218691.
  16. Yakir, Dan; Montzka, Stephen A.; Uri Dicken; Tatarinov, Fyodor; Rotenberg, Eyal; Asaf, David (March 2013). "Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux". Nature Geoscience. 6 (3): 186–190. doi:10.1038/ngeo1730. ISSN   1752-0908.
  17. Couërbe, J. P. (1841). "Ueber den Schwefelkohlenstoff". Journal für Praktische Chemie. 23 (1): 83–124. doi:10.1002/prac.18410230105.
  18. Ferm R. J. (1957). "The Chemistry of Carbonyl Sulfide". Chemical Reviews . 57 (4): 621–640. doi:10.1021/cr50016a002.

Further reading