Amino radical

Last updated
Amino radical
Amino radical.svg
Amino-radical-3D-vdW.png
Names
IUPAC name
Azanyl; Aminyl
Systematic IUPAC name
Azanyl [1] (substitutive)
Dihydridonitrogen(•) [1] (additive)
Other names
Amidogen; Amino radical
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/H2N/h1H2 Yes check.svgY
    Key: MDFFNEOEWAXZRQ-UHFFFAOYSA-N Yes check.svgY
  • [NH2]
Properties
NH
2
Molar mass 16.0226 g mol−1
Thermochemistry
Std molar
entropy
(S298)
194.71 J K−1 mol−1
190.37 kJ mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

In chemistry, the amino radical, ·NH2, also known as the aminyl or azanyl, is the neutral form of the amide ion (NH2). Aminyl radicals are highly reactive and consequently short-lived, like most radicals; however, they form an important part of nitrogen chemistry. In sufficiently high concentration, amino radicals dimerise to form hydrazine. While NH2 as a functional group is common in nature, forming a part of many compounds (e.g. the phenethylamines), the radical cannot be isolated in its free form. [2]

Contents

Synthesis

Reaction 1: Formation of amino radical from ammonia

Amino radicals can be produced by reacting OH radical with ammonia in irradiated aqueous solutions. This reaction is formulated as a hydrogen abstraction reaction. [3]

NH3 + ·OH → ·NH2 + H2O

The rate constant (k1) for this reaction was determined to be 1.0×108 M−1 s−1, while the parallel reaction of OH with NH+
4
was found to be much slower. This rate was redetermined by using two-pulse radiolysis competition methods with benzoate and thiocyanate ions at pH 11.4. A value of k1 = (9 + 1)×107 M−1 s−1 was obtained from both systems. While in acidic solution, the corresponding reaction of ·OH with NH+4 is too slow to be observed by pulse radiolysis.

Reaction 2: Formation of amino radical from hydroxylamine

The amino radical may also be produced by reaction of e(aq) with hydroxylamine (NH2OH). Several studies also utilized the redox system of TiIII−NH2OH for the production of amino radicals using electron paramagnetic resonance (ESR) spectroscopy and polarography. [3]

TiIII + NH2OH → TiIV + ·NH2 + HO

Reaction 3: Formation of amino radical from ammoniumyl

Reduction of hydroxylamine by e(aq) has also been suggested to produce the amino radical in the following reaction. [3]

·NH+3·NH2 + H+

The reactivity of the amino radical in this reaction is expected to be pH dependent and should occur in the region of pH 3–7.

Properties

Electronic states

The amino radical has two characteristic electronic states:

The electronic states of the amino radical.jpg

The more stable electronic state is 2B1, where the unpaired electron is in the p-orbital perpendicular to the plane of the molecule (π type radical). The high energy electronic state, 2A1, has the two electrons in the p-orbital and the unpaired electron in the sp2 orbital (σ type radical). [4] [5]

Nitrogen centered compounds, such as amines, are nucleophilic in nature. This character is also seen in amino radicals, which can be considered to be nucleophilic species. [4] [5]

Spectral properties

The amino radical only exhibits a very low optical absorption in the visible region (λmax = 530 nm, εmax = 81 M−1 s−1), while its absorption in the UV (<260 nm) is similar to that of OH. Due to this, it is impractical to determine the rate of reaction of the amino radical with organic compounds by following the decay of the amino radical.

Reactivity

In general, amino radicals are highly reactive and short lived; however, this is not the case when reacted with some organic molecules. Relative reactivities of the amino radical with several organic compounds have been reported, but the absolute rate constants for such reactions remain unknown. In reaction 1, it was hypothesized that the amino radical might possibly react with NH3 more rapidly than OH and might oxidize NH+
4
to produce the amino radical in acid solutions, given that radicals are stronger oxidants than OH. In order to test this, sulfate and phosphate radical anions were used. The sulfate and phosphate radical anions were found to react more slowly with NH3 than does the amino radical and they react with ammonia by hydrogen abstraction and not by electron transfer oxidation. [3]

When the amino radical is reacted with benzoate ions, the rate constant is very low and only a weak absorption in the UV spectra is observed, indicating that amino radicals do not react with benzene rapidly. Phenol, on the other hand, was found to react more rapidly with the amino radical. In experiments at pH 11.3 and 12, using 1.5 M NH3 and varying concentrations of phenol between 4 and 10 mM, the formation of the phenoxyl radical absorption was observed with a rate constant of (3 + 0.4)×106 M−1 s−1. This reaction can produce phenoxyl radicals via two possible mechanisms: [3]

  1. Addition to the ring followed by elimination of NH3, or
  2. Oxidation by direct electron transfer
Rate constants for reaction of NH2 radicals. These rate constants for the amino radical reactions were measured in a 1978 study by Neta et al. by following the kinetics of formation of the resultant radicals. The observations were made at the absorption maxima of these radicals. Rate constants for reaction of NH2 radicals TABLE.png
Rate constants for reaction of NH2 radicals. These rate constants for the amino radical reactions were measured in a 1978 study by Neta et al. by following the kinetics of formation of the resultant radicals. The observations were made at the absorption maxima of these radicals.

While the amino radical is known to be weakly reactive, the recombination process of two amino radicals to form hydrazine appears to be one of the fastest. As a result, it often competes with other NH2 reactions.

NH2 + NH2 → N2H4

At low pressures, this reaction is the fastest and therefore the principal mode of NH2 disappearance. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Amine</span> Chemical compounds and groups containing nitrogen with a lone pair (:N)

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Formally, amines are derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Nitrogen</span> Chemical element with atomic number 7 (N)

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

<span class="mw-page-title-main">Hydroxylamine</span> Inorganic compound

Hydroxylamine is an inorganic compound with the chemical formula NH2OH. The compound is in a form of a white hygroscopic crystals. Hydroxylamine is almost always provided and used as an aqueous solution. It is consumed almost exclusively to produce Nylon-6. The oxidation of NH3 to hydroxylamine is a step in biological nitrification.

<span class="mw-page-title-main">Nitrous acid</span> Chemical compound

Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.

In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923. The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H+). This theory generalises the Arrhenius theory.

Amination is the process by which an amine group is introduced into an organic molecule. This type of reaction is important because organonitrogen compounds are pervasive.

<span class="mw-page-title-main">Cyanuric acid</span> Chemical compound belonging to the class of triazine

Cyanuric acid or 1,3,5-triazine-2,4,6-triol is a chemical compound with the formula (CNOH)3. Like many industrially useful chemicals, this triazine has many synonyms. This white, odorless solid finds use as a precursor or a component of bleaches, disinfectants, and herbicides. In 1997, worldwide production was 160 000 tonnes.

Radiation chemistry is a subdivision of nuclear chemistry which studies the chemical effects of ionizing radiation on matter. This is quite different from radiochemistry, as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and hydrogen peroxide.

Monochloramine, often called chloramine, is the chemical compound with the formula NH2Cl. Together with dichloramine (NHCl2) and nitrogen trichloride (NCl3), it is one of the three chloramines of ammonia. It is a colorless liquid at its melting point of −66 °C (−87 °F), but it is usually handled as a dilute aqueous solution, in which form it is sometimes used as a disinfectant. Chloramine is too unstable to have its boiling point measured.

<span class="mw-page-title-main">Frost diagram</span> Graph showing the free energy vs oxidation state of a chemical species

A Frost diagram or Frost–Ebsworth diagram is a type of graph used by inorganic chemists in electrochemistry to illustrate the relative stability of a number of different oxidation states of a particular substance. The graph illustrates the free energy vs oxidation state of a chemical species. This effect is dependent on pH, so this parameter also must be included. The free energy is determined by the oxidation–reduction half-reactions. The Frost diagram allows easier comprehension of these reduction potentials than the earlier-designed Latimer diagram, because the “lack of additivity of potentials” was confusing. The free energy ΔG° is related to the standard electrode potential E° shown in the graph by the formula: ΔG° = −nFE° or nE° = −ΔG°/F, where n is the number of transferred electrons, and F is the Faraday constant (F ≈ 96,485 coulomb/(mol e)). The Frost diagram is named after Arthur Atwater Frost, who originally invented it as a way to "show both free energy and oxidation potential data conveniently" in a 1951 paper.

A solvated electron is a free electron in a solution, in which it behaves like an anion. An electron's being solvated in a solution means it is bound by the solution. The notation for a solvated electron in formulas of chemical reactions is "e". Often, discussions of solvated electrons focus on their solutions in ammonia, which are stable for days, but solvated electrons also occur in water and many other solvents – in fact, in any solvent that mediates outer-sphere electron transfer. The solvated electron is responsible for a great deal of radiation chemistry.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

<span class="mw-page-title-main">Imidogen</span> Inorganic radical with the chemical formula NH

Imidogen is an inorganic compound with the chemical formula NH. Like other simple radicals, it is highly reactive and consequently short-lived except as a dilute gas. Its behavior depends on its spin multiplicity.

<span class="mw-page-title-main">Ammonium carbamate</span> Chemical compound

Ammonium carbamate is a chemical compound with the formula [NH4][H2NCO2] consisting of ammonium cation NH+4 and carbamate anion NH2COO. It is a white solid that is extremely soluble in water, less so in alcohol. Ammonium carbamate can be formed by the reaction of ammonia NH3 with carbon dioxide CO2, and will slowly decompose to those gases at ordinary temperatures and pressures. It is an intermediate in the industrial synthesis of urea (NH2)2CO, an important fertilizer.

Hydroxylamine-<i>O</i>-sulfonic acid Chemical compound

Hydroxylamine-O-sulfonic acid (HOSA) or aminosulfuric acid is the inorganic compound with molecular formula H3NO4S that is formed by the sulfonation of hydroxylamine with oleum. It is a white, water-soluble and hygroscopic, solid, commonly represented by the condensed structural formula H2NOSO3H, though it actually exists as a zwitterion and thus is more accurately represented as +H3NOSO3. It is used as a reagent for the introduction of amine groups (–NH2), for the conversion of aldehydes into nitriles and alicyclic ketones into lactams (cyclic amides), and for the synthesis of variety of nitrogen-containing heterocycles.

In chemistry, ammonolysis (/am·mo·nol·y·sis/) is the process of splitting ammonia into . Ammonolysis reactions can be conducted with organic compounds to produce amines (molecules containing a nitrogen atom with a lone pair, :N), or with inorganic compounds to produce nitrides. This reaction is analogous to hydrolysis in which water molecules are split. Similar to water, liquid ammonia also undergoes auto-ionization, , where the rate constant is k = 1.9 × 10-38.

References

  1. 1 2 "aminyl (CHEBI:29318)". Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute. IUPAC Names.
  2. die.net. "Amidogen". Archived from the original on February 21, 2013. Retrieved May 16, 2012.
  3. 1 2 3 4 5 6 Neta, P.; Maruthamuthu, P.; Carton, P. M.; Fessenden, R. W. (1978). "Formation and reactivity of the amino radical". The Journal of Physical Chemistry. 82 (17): 1875–1878. doi:10.1021/j100506a004. ISSN   0022-3654.
  4. 1 2 "Amino Radical". NIST Chemistry WebBook. National Institute of Science and Technology. 2017. Retrieved 15 June 2018.
  5. 1 2 Koenig, T.; Hoobler, J. A.; Klopfenstein, C. E.; Hedden, G.; Sunderman, F.; Russell, B. R. (1974). "Electronic configurations of amido radicals". Journal of the American Chemical Society. 96 (14): 4573–4577. doi:10.1021/ja00821a036. ISSN   0002-7863.
  6. Khe, P. V.; Soulignac, J. C.; Lesclaux, R. (1977). "Pressure and temperature dependence of amino radical recombination rate constant". The Journal of Physical Chemistry. 81 (3): 210–214. doi:10.1021/j100518a006.

Further reading