PAH world hypothesis

Last updated

The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, [1] [2] [3] including in comets, [4] and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested. [5]

Contents

A PAH stack assembling PAHWorld.svg
A PAH stack assembling

Background

The Miller-Urey experiment showed that organic compounds can be readily produced under the presumed conditions of the early Earth. Miller-Urey experiment-en.svg
The Miller–Urey experiment showed that organic compounds can be readily produced under the presumed conditions of the early Earth.

The 1952 Miller–Urey experiment demonstrated the synthesis of organic compounds, such as amino acids, formaldehyde and sugars, from the original inorganic precursors the researchers presumed to have been present in the primordial soup (but is no longer considered likely). This experiment inspired many others. In 1961, Joan Oró found that the nucleotide base adenine could be made from hydrogen cyanide (HCN) and ammonia in a water solution. [6] Experiments conducted later showed that the other RNA and DNA nucleobases could be obtained through simulated prebiotic chemistry with a reducing atmosphere. [7]

The RNA world hypothesis shows how RNA can become its own catalyst (a ribozyme). In between there are some missing steps such as how the first RNA molecules could be formed. The PAH world hypothesis was proposed by Simon Nicholas Platts in May 2004 to try to fill in this missing step. [8] A more thoroughly elaborated idea has been published by Ehrenfreund et al. [9]

Polycyclic aromatic hydrocarbons

The Cat's Paw Nebula lies inside the Milky Way Galaxy and is located in the constellation Scorpius.
Green areas show regions where radiation from hot stars collided with large molecules and small dust grains called "polycyclic aromatic hydrocarbons" (PAHs), causing them to fluoresce.
(Spitzer Space Telescope, 2018) PIA22568-CatsPawNebula-Spitzer-20181023.jpg
The Cat's Paw Nebula lies inside the Milky Way Galaxy and is located in the constellation Scorpius.
Green areas show regions where radiation from hot stars collided with large molecules and small dust grains called "polycyclic aromatic hydrocarbons" (PAHs), causing them to fluoresce.
(Spitzer Space Telescope, 2018)

Polycyclic aromatic hydrocarbons are the most common and abundant of the known polyatomic molecules in the visible universe, and are considered a likely constituent of the primordial sea. [1] [2] [3] PAHs, along with fullerenes (or "buckyballs"), have been recently detected in nebulae. [10] Buckminsterfullerene (C60) has been identified in the interstellar medium spaces. [11] [12] (Fullerenes are also implicated in the origin of life; according to astronomer Letizia Stanghellini, "It's possible that buckyballs from outer space provided seeds for life on Earth." [13] ) PAHs, subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation and hydroxylation, to more complex organics — "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively". [14] [15] Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks." [14] [15]

In 2013, polycyclic aromatic hydrocarbons were detected in the upper atmosphere of Titan, the largest moon of the planet Saturn. [16]

Low-temperature chemical pathways from simple organic compounds to complex PAHs have been demonstrated. Such chemical pathways may help explain the presence of PAHs in the low-temperature atmosphere of Saturn 's moon Titan, and may be significant pathways, in terms of the PAH world hypothesis, in producing precursors to biochemicals related to life as we know it. [17] [18]

PAHs are not normally very soluble in sea water, but when subject to ionizing radiation such as solar UV light, the outer hydrogen atoms can be stripped off and replaced with a hydroxyl group, rendering the PAHs far more soluble.

These modified PAHs are amphiphilic, which means that they have parts that are both hydrophilic and hydrophobic. When in solution, they assemble in discotic mesogenic (liquid crystal) stacks which, like lipids, tend to organize with their hydrophobic parts protected.

In 2014, NASA announced a database [19] for tracking polycyclic aromatic hydrocarbons (PAHs) in the universe. More than 20% of the carbon in the universe may be associated with PAHs, [19] [20] possible starting materials for the formation of life. PAHs seem to have been formed as early as a couple of billion years after the Big Bang, are abundant in the universe, [1] [2] [3] and are associated with new stars and exoplanets. [19]

Reactions

Attachment of nucleobases to PAH scaffolding

In the self-ordering PAH stack, the separation between adjacent rings is 0.34 nm. This is the same separation found between adjacent nucleotides of RNA and DNA. Smaller molecules will naturally attach themselves to the PAH rings. However PAH rings, while forming, tend to swivel around on one another, which will tend to dislodge attached compounds that would collide with those attached to those above and below. Therefore, it encourages preferential attachment of flat molecules such as pyrimidine and purine nucleobases, the key constituents (and information carriers) of RNA and DNA. These bases are similarly amphiphilic and so also tend to line up in similar stacks.

Attachment of oligomeric backbone

According to the hypothesis, once the nucleobases are attached (via hydrogen bonds) to the PAH scaffolding, the inter-base distance would select for "linker" molecules of a specific size, such as small formaldehyde (methanal) oligomers, also taken from the prebiotic "soup", which will bind (via covalent bonds) to the nucleobases as well as each other to add a flexible structural backbone. [5] [8]

Detachment of the RNA-like strands

A subsequent transient drop in the ambient pH (increase in acidity), for example as a result of a volcanic discharge of acidic gases such as sulfur dioxide or carbon dioxide, would allow the bases to break off from their PAH scaffolding, forming RNA-like molecules (with the formaldehyde backbone instead of the ribose-phosphate backbone used by "modern" RNA, but the same 0.34 nm pitch). [5]

Formation of ribozyme-like structures

The hypothesis further speculates that once long RNA-like single strands are detached from the PAH stacks, and after ambient pH levels became less acidic, they would tend to fold back on themselves, with complementary sequences of nucleobases preferentially seeking out each other and forming hydrogen bonds, creating stable, at least partially double-stranded RNA-like structures, similar to ribozymes. The formaldehyde oligomers would eventually be replaced with more stable ribose-phosphate molecules for the backbone material, resulting in a starting milestone for the RNA world hypothesis, which speculates about further evolutionary developments from that point. [5] [8] [21]

See also

Related Research Articles

<span class="mw-page-title-main">Hypothetical types of biochemistry</span> Possible alternative biochemicals used by life forms

Hypothetical types of biochemistry are forms of biochemistry agreed to be scientifically viable but not proven to exist at this time. The kinds of living organisms currently known on Earth all use carbon compounds for basic structural and metabolic functions, water as a solvent, and DNA or RNA to define and control their form. If life exists on other planets or moons it may be chemically similar, though it is also possible that there are organisms with quite different chemistries – for instance, involving other classes of carbon compounds, compounds of another element, or another solvent in place of water.

<span class="mw-page-title-main">Miller–Urey experiment</span> Experiment testing the origin of life

The Miller–Urey experiment, or Miller experiment, was an experiment in chemical synthesis carried out in 1952 that simulated the conditions thought at the time to be present in the atmosphere of the early, prebiotic Earth. It is seen as one of the first successful experiments demonstrating the synthesis of organic compounds from inorganic constituents in an origin of life scenario. The experiment used methane (CH4), ammonia (NH3), hydrogen (H2), in ratio 2:2:1, and water (H2O). Applying an electric arc (simulating lightning) resulted in the production of amino acids.

Pyrimidine is an aromatic, heterocyclic, organic compound similar to pyridine. One of the three diazines, it has nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine.

<span class="mw-page-title-main">RNA world</span> Hypothetical stage in the early evolutionary history of life on Earth

The RNA world is a hypothetical stage in the evolutionary history of life on Earth in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence of this stage.

<span class="mw-page-title-main">Uracil</span> Chemical compound of RNA

Uracil is one of the four nucleotide bases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced by thymine (T). Uracil is a demethylated form of thymine.

<span class="mw-page-title-main">Thymine</span> Chemical compound of DNA

Thymine is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calf thymus glands, hence its name.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<span class="mw-page-title-main">Cosmochemistry</span> Study of the chemical composition of matter in the universe

Cosmochemistry or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System.

<span class="mw-page-title-main">Tholin</span> Class of molecules formed by ultraviolet irradiation of organic compounds

Tholins are a wide variety of organic compounds formed by solar ultraviolet or cosmic ray irradiation of simple carbon-containing compounds such as carbon dioxide, methane or ethane, often in combination with nitrogen or water. Tholins are disordered polymer-like materials made of repeating chains of linked subunits and complex combinations of functional groups, typically nitriles and hydrocarbons, and their degraded forms such as amines and phenyls. Tholins do not form naturally on modern-day Earth, but they are found in great abundance on the surfaces of icy bodies in the outer Solar System, and as reddish aerosols in the atmospheres of outer Solar System planets and moons.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids and meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.

<span class="mw-page-title-main">Atomic and molecular astrophysics</span> Field of study on atomic and molecular particles in space

Atomic astrophysics is concerned with performing atomic physics calculations that will be useful to astronomers and using atomic data to interpret astronomical observations. Atomic physics plays a key role in astrophysics as astronomers' only information about a particular object comes through the light that it emits, and this light arises through atomic transitions.

<span class="mw-page-title-main">Life on Titan</span> Scientific assessments on the microbial habitability of Titan

Whether there is life on Titan, the largest moon of Saturn, is currently an open question and a topic of scientific assessment and research. Titan is far colder than Earth, but of all the places in the Solar System, Titan is the only place besides Earth known to have liquids in the form of rivers, lakes, and seas on its surface. Its thick atmosphere is chemically active and rich in carbon compounds. On the surface there are small and large bodies of both liquid methane and ethane, and it is likely that there is a layer of liquid water under its ice shell. Some scientists speculate that these liquid mixes may provide prebiotic chemistry for living cells different from those on Earth.

<span class="mw-page-title-main">Abiogenesis</span> Life arising from non-living matter

Abiogenesis is the natural process by which life arises from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single event, but a process of increasing complexity involving the formation of a habitable planet, the prebiotic synthesis of organic molecules, molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. The transition from non-life to life has never been observed experimentally, but many proposals have been made for different stages of the process.

<span class="mw-page-title-main">Cyclopropenylidene</span> Chemical compound

Cyclopropenylidene, or c-C3H2, is a partially aromatic molecule belonging to a highly reactive class of organic molecules known as carbenes. On Earth, cyclopropenylidene is only seen in the laboratory due to its reactivity. However, cyclopropenylidene is found in significant concentrations in the interstellar medium (ISM) and on Saturn's moon Titan. Its C2v symmetric isomer, propadienylidene (CCCH2) is also found in the ISM, but with abundances about an order of magnitude lower. A third C2 symmetric isomer, propargylene (HCCCH), has not yet been detected in the ISM, most likely due to its low dipole moment.

Interstellar ice consists of grains of volatiles in the ice phase that form in the interstellar medium. Ice and dust grains form the primary material out of which the Solar System was formed. Grains of ice are found in the dense regions of molecular clouds, where new stars are formed. Temperatures in these regions can be as low as 10 K, allowing molecules that collide with grains to form an icy mantle. Thereafter, atoms undergo thermal motion across the surface, eventually forming bonds with other atoms. This results in the formation of water and methanol. Indeed, the ices are dominated by water and methanol, as well as ammonia, carbon monoxide and carbon dioxide. Frozen formaldehyde and molecular hydrogen may also be present. Found in lower abundances are nitriles, ketones, esters and carbonyl sulfide. The mantles of interstellar ice grains are generally amorphous, becoming crystalline only in the presence of a star.

OREOcube is an experiment designed by the European Space Agency (ESA) with the NASA that will investigate the effects of solar and cosmic radiation on selected organic compounds. It will consist in a 12-month orbital study of the effects of the outer space environment on astrobiologically relevant materials in an external exposure facility on the International Space Station (ISS).

<span class="mw-page-title-main">2-Methylnaphthalene</span> Chemical compound

2-Methylnaphthalene is a polycyclic aromatic hydrocarbon (PAH).

Formamide-based prebiotic chemistry is a reconstruction of the beginnings of life on Earth, assuming that formamide could accumulate in sufficiently high amounts to serve as the building block and reaction medium for the synthesis of the first biogenic molecules.

Pseudo-panspermia is a well-supported hypothesis for a stage in the origin of life. The theory first asserts that many of the small organic molecules used for life originated in space. It continues that these organic molecules were distributed to planetary surfaces, where life then emerged on Earth and perhaps on other planets. Pseudo-panspermia differs from the fringe theory of panspermia, which asserts that life arrived on Earth from distant planets.

References

  1. 1 2 3 Carey, Bjorn (October 18, 2005). "Life's Building Blocks 'Abundant in Space'". Space.com . Retrieved March 3, 2014.
  2. 1 2 3 Hudgins, Douglas M.; Bauschlicher, Jr, Charles W.; Allamandola, L. J. (October 10, 2005). "Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population". Astrophysical Journal . 632 (1): 316–332. Bibcode:2005ApJ...632..316H. CiteSeerX   10.1.1.218.8786 . doi:10.1086/432495. S2CID   7808613.
  3. 1 2 3 Allamandola, Louis; et al. (April 13, 2011). "Cosmic Distribution of Chemical Complexity". NASA . Archived from the original on February 27, 2014. Retrieved March 3, 2014.
  4. Clavin, Whitney (February 10, 2015). "Why Comets Are Like Deep Fried Ice Cream". NASA . Retrieved February 10, 2015.
  5. 1 2 3 4 Platts, Simon Nicholas, "The PAH World - Discotic polynuclear aromatic compounds as a mesophase scaffolding at the origin of life"
  6. Oró J, Kimball AP (August 1961). "Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide". Archives of Biochemistry and Biophysics. 94 (2): 217–27. doi:10.1016/0003-9861(61)90033-9. PMID   13731263.
  7. Oró J (1967). Fox SW (ed.). Origins of Prebiological Systems and of Their Molecular Matrices. New York Academic Press. p. 137.
  8. 1 2 3 "Prebiotic Molecular Selection and Organization" Archived 2009-05-24 at the Wayback Machine , NASA's Astrobiology website
  9. Ehrenfreund, P; Rasmussen, S; Cleaves, J; Chen, L (2006). "Experimentally tracing the key steps in the origin of life: The aromatic world". Astrobiology. 6 (3): 490–520. Bibcode:2006AsBio...6..490E. doi:10.1089/ast.2006.6.490. PMID   16805704.
  10. García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V. (2010-10-28). "Formation Of Fullerenes In H-Containing Planetary Nebulae". The Astrophysical Journal Letters . 724 (1): L39–L43. arXiv: 1009.4357 . Bibcode:2010ApJ...724L..39G. doi:10.1088/2041-8205/724/1/L39. S2CID   119121764.
  11. Starr, Michelle (29 April 2019). "The Hubble Space Telescope Has Just Found Solid Evidence of Interstellar Buckyballs". ScienceAlert.com. Retrieved 29 April 2019.
  12. Cordiner, M.A.; et al. (22 April 2019). "Confirming Interstellar C60 + Using the Hubble Space Telescope". The Astrophysical Journal Letters . 875 (2): L28. arXiv: 1904.08821 . Bibcode:2019ApJ...875L..28C. doi: 10.3847/2041-8213/ab14e5 . S2CID   121292704.
  13. Atkinson, Nancy (October 27, 2010). "Buckyballs Could Be Plentiful in the Universe". Universe Today . Retrieved October 28, 2010.
  14. 1 2 "NASA Cooks Up Icy Organics to Mimic Life's Origins". Space.com. September 20, 2012. Retrieved September 22, 2012.
  15. 1 2 Gudipati, Murthy S.; Yang, Rui (September 1, 2012). "In-Situ Probing Of Radiation-Induced Processing Of Organics In Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies". The Astrophysical Journal Letters . 756 (1): L24. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. S2CID   5541727.
  16. López-Puertas, Manuel (June 6, 2013). "PAH's in Titan's Upper Atmosphere". CSIC . Retrieved June 6, 2013.
  17. Staff (11 October 2018). ""A Prebiotic Earth" – Missing Link Found on Saturn's Moon Titan". DailyGalaxy.com. Retrieved 11 October 2018.
  18. Zhao, Long; et al. (8 October 2018). "Low-temperature formation of polycyclic aromatic hydrocarbons in Titan's atmosphere". Nature Astronomy . 2 (12): 973–979. Bibcode:2018NatAs...2..973Z. doi:10.1038/s41550-018-0585-y. S2CID   105480354.
  19. 1 2 3 Hoover, Rachel (February 21, 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". NASA . Retrieved February 22, 2014.
  20. Hoover, Rachel (February 24, 2014). "Online Database Tracks Organic Nano-Particles Across the Universe". Sci Tech Daily. Retrieved March 10, 2015.
  21. Lincoln, Tracey A.; Joyce, Gerald F. (January 8, 2009). "Self-Sustained Replication of an RNA Enzyme". Science. 323 (5918). New York: American Association for the Advancement of Science: 1229–1232. Bibcode:2009Sci...323.1229L. doi:10.1126/science.1167856. PMC   2652413 . PMID   19131595.