C70 fullerene

Last updated
C70 fullerene
Fullerene-C70-3D-balls.png
Names
Preferred IUPAC name
(C70-D5h(6))[5,6]Fullerene [1]
Other names
Fullerene-C70, rugbyballene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.162.223 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/C70/c1-2-22-5-6-24-13-14-26-11-9-23-4-3(21(1)51-52(22)54(24)55(26)53(23)51)33-31(1)61-35-7-8-27-15-16-29-19-20-30-18-17-28-12-10(25(7)56-57(27)59(29)60(30)58(28)56)37(35)63(33)65-36(4)40(9)67(44(17)42(12)65)69-46(11)47(14)70(50(20)49(18)69)68-43(13)39(6)66(45(16)48(19)68)64-34(5)32(2)62(61)38(8)41(15)64
    Key: ATLMFJTZZPOKLC-UHFFFAOYSA-N
  • InChI=1/C70/c1-2-22-5-6-24-13-14-26-11-9-23-4-3(21(1)51-52(22)54(24)55(26)53(23)51)33-31(1)61-35-7-8-27-15-16-29-19-20-30-18-17-28-12-10(25(7)56-57(27)59(29)60(30)58(28)56)37(35)63(33)65-36(4)40(9)67(44(17)42(12)65)69-46(11)47(14)70(50(20)49(18)69)68-43(13)39(6)66(45(16)48(19)68)64-34(5)32(2)62(61)38(8)41(15)64
    Key: ATLMFJTZZPOKLC-UHFFFAOYAA
  • C12=C3C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%10=C%10C8=C5C1=C%10C1=C%13C5=C8C1=C2C1=C3C2=C3C%10=C%13C%14=C3C1=C8C1=C3C5=C%12C5=C8C%11=C%11C9=C7C7=C9C6=C4C2=C2C%10=C4C(=C29)C2=C6C(=C8C8=C9C6=C4C%13=C9C(=C%141)C3=C85)C%11=C27
Properties
C70
Molar mass 840.770 g·mol−1
AppearanceDark needle-like crystals
Density 1.7 g/cm3
Melting point sublimates at ~850 °C [2]
insoluble in water
Band gap 1.77 eV [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

C70 fullerene is the fullerene molecule consisting of 70 carbon atoms. It is a cage-like fused-ring structure which resembles a rugby ball, made of 25 hexagons and 12 pentagons, with a carbon atom at the vertices of each polygon and a bond along each polygon edge. A related fullerene molecule, named buckminsterfullerene (C60 fullerene), consists of 60 carbon atoms.

Contents

It was first intentionally prepared in 1985 by Harold Kroto, James R. Heath, Sean O'Brien, Robert Curl and Richard Smalley at Rice University. Kroto, Curl and Smalley were awarded the 1996 Nobel Prize in Chemistry for their roles in the discovery of cage-like fullerenes. The name is a homage to Buckminster Fuller, whose geodesic domes these molecules resemble. [4]

History

Theoretical predictions of buckyball molecules appeared in the late 1960s to early 1970s, [5] but they went largely unnoticed. In the early 1970s, the chemistry of unsaturated carbon configurations was studied by a group at the University of Sussex, led by Harry Kroto and David Walton. In the 1980s a technique was developed by Richard Smalley and Bob Curl at Rice University, Texas to isolate these substances. They used laser vaporization of a suitable target to produce clusters of atoms. Kroto realized that by using a graphite target. [6]

C70 was discovered in 1985 by Robert Curl, Harold Kroto and Richard Smalley. Using laser evaporation of graphite they found Cn clusters (for even n with n > 20) of which the most common were C60 and C70. For this discovery they were awarded the 1996 Nobel Prize in Chemistry. The discovery of buckyballs was serendipitous, as the scientists were aiming to produce carbon plasmas to replicate and characterize unidentified interstellar matter. Mass spectrometry analysis of the product indicated the formation of spheroidal carbon molecules. [5]

Synthesis

In 1990, K. Fostiropoulos, W. Krätchmer and D. R. Huffman developed a simple and efficient method of producing fullerenes in gram and even kilogram amounts which boosted fullerene research. In this technique, carbon soot is produced from two high-purity graphite electrodes by igniting an arc discharge between them in an inert atmosphere (helium gas). Alternatively, soot is produced by laser ablation of graphite or pyrolysis of aromatic hydrocarbons. Fullerenes are extracted from the soot using a multistep procedure. First, the soot is dissolved in appropriate organic solvents. This step yields a solution containing up to 70% of C60 and 15% of C70, as well as other fullerenes. These fractions are separated using chromatography. [7]

Properties

Molecule

The C70 molecule has a D5h symmetry and contains 37 faces (25 hexagons and 12 pentagons) with a carbon atom at the vertices of each polygon and a bond along each polygon edge. Its structure is similar to that of C60 molecule (20 hexagons and 12 pentagons), but has a belt of 5 hexagons inserted at the equator. The molecule has eight bond lengths ranging between 0.137 and 0.146 nm. Each carbon atom in the structure is bonded covalently with 3 others. [8]

The structure of C70 molecule. Red atoms indicate five hexagons additional to the C60 molecule. Fullerene C70.png
The structure of C70 molecule. Red atoms indicate five hexagons additional to the C60 molecule.

C70 can undergo six reversible, one-electron reductions to C6−
70
, whereas oxidation is irreversible. The first reduction requires around 1.0 V (Fc/Fc+
), indicating that C70 is an electron acceptor. [9]

Solution

Saturated solubility of C70 (S, mg/mL) [10]
SolventS (mg/mL)
1,2-dichlorobenzene 36.2
carbon disulfide 9.875
xylene 3.985
toluene 1.406
benzene 1.3
carbon tetrachloride 0.121
n-hexane 0.013
cyclohexane 0.08
pentane 0.002
octane 0.042
decane 0.053
dodecane 0.098
heptane 0.047
isopropanol 0.0021
mesitylene 1.472
dichloromethane 0.080

Fullerenes are sparingly soluble in many aromatic solvents such as toluene and others like carbon disulfide, but not in water. Solutions of C70 are a reddish brown. Millimeter-sized crystals of C70 can be grown from solution. [11]

Solid

Solid C70 crystallizes in monoclinic, hexagonal, rhombohedral, and face-centered cubic (fcc) polymorphs at room temperature. The fcc phase is more stable at temperatures above 70 °C. The presence of these phases is rationalized as follows. In a solid, C70 molecules form an fcc arrangement where the overall symmetry depends on their relative orientations. The low-symmetry monoclinic form is observed when molecular rotation is locked by temperature or strain. Partial rotation along one of the symmetry axes of the molecule results in the higher hexagonal or rhombohedral symmetries, which turn into a cubic structure when the molecules start freely rotating. [3] [12]

All phases of C70 form brownish crystals with a bandgap of 1.77 eV; [3] they are n-type semiconductors where conductivity is attributed to oxygen diffusion into the solid from atmosphere. [13] The unit cell of fcc C70 solid contains voids at 4 octahedral and 12 tetrahedral sites. [14] They are large enough to accommodate impurity atoms. When electron-donating elements, such as alkali metals, are doped into these voids, C70 converts into a conductor with conductivity up to around 2  S/cm. [15]

Some of the C70 solid phases [12]
Symmetry Space group NoPearson
symbol
a (nm)b (nm)c (nm)ZDensity
(g/cm3)
Monoclinic P21/m11mP5601.9961.8511.9968
Hexagonal P63/mmc194hP1401.0111.0111.85821.70
Cubic Fm3m225cF2801.4961.4961.49641.67

Related Research Articles

<span class="mw-page-title-main">Carbon</span> Chemical element, symbol C and atomic number 6

Carbon is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes up about 0.025 percent of Earth's crust. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of about 5,730 years. Carbon is one of the few elements known since antiquity.

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbons

A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. Graphene, which is a flat mesh of regular hexagonal rings, can be seen as an extreme member of the family.

<span class="mw-page-title-main">Harry Kroto</span> English chemist

Sir Harold Walter Kroto, known as Harry Kroto, was an English chemist. He shared the 1996 Nobel Prize in Chemistry with Robert Curl and Richard Smalley for their discovery of fullerenes. He was the recipient of many other honors and awards.

<span class="mw-page-title-main">Richard Smalley</span> American chemist

Richard Errett Smalley was an American chemist who was the Gene and Norman Hackerman Professor of Chemistry, Physics, and Astronomy at Rice University. In 1996, along with Robert Curl, also a professor of chemistry at Rice, and Harold Kroto, a professor at the University of Sussex, he was awarded the Nobel Prize in Chemistry for the discovery of a new form of carbon, buckminsterfullerene, also known as buckyballs. He was an advocate of nanotechnology and its applications.

<span class="mw-page-title-main">Robert Curl</span> American chemist (1933–2022)

Robert Floyd Curl Jr. was an American chemist who was Pitzer–Schlumberger Professor of Natural Sciences and Professor of Chemistry at Rice University. He was awarded the Nobel Prize in Chemistry in 1996 for the discovery of the nanomaterial buckminsterfullerene, and hence the fullerene class of materials, along with Richard Smalley and Harold Kroto of the University of Sussex.

<span class="mw-page-title-main">Truncated icosahedron</span> Archimedean solid

In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. In general usage, the degree of truncation is assumed to be uniform unless specified.

<span class="mw-page-title-main">Buckminsterfullerene</span> Cage-like allotrope of carbon

Buckminsterfullerene is a type of fullerene with the formula C60. It has a cage-like fused-ring structure (truncated icosahedron) made of twenty hexagons and twelve pentagons, and resembles a soccer ball. Each of its 60 carbon atoms is bonded to its three neighbors.

<span class="mw-page-title-main">Allotropes of carbon</span> Materials made only out of carbon

Carbon is capable of forming many allotropes due to its valency. Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene. Larger-scale structures of carbon include nanotubes, nanobuds and nanoribbons. Other unusual forms of carbon exist at very high temperatures or extreme pressures. Around 500 hypothetical 3‑periodic allotropes of carbon are known at the present time, according to the Samara Carbon Allotrope Database (SACADA).

<span class="mw-page-title-main">Delocalized electron</span> Electrons that are not associated with a single atom or covalent bond

In chemistry, delocalized electrons are electrons in a molecule, ion or solid metal that are not associated with a single atom or a covalent bond.

<span class="mw-page-title-main">Fullerene chemistry</span>

Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage.

The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.

<span class="mw-page-title-main">Interstitial defect</span> Crystallographic defect; atoms located in the gaps between atoms in the lattice

In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material.

James R. Heath is an American chemist and the president and professor of Institute of Systems Biology. Previous to this, he was the Elizabeth W. Gilloon Professor of Chemistry at the California Institute of Technology, after having moved from University of California Los Angeles.

<span class="mw-page-title-main">Linear acetylenic carbon</span> Polymer made of repeating −C≡C− units

Linear acetylenic carbon (LAC), also known as carbyne or Linear Carbon Chain (LCC), is an allotrope of carbon that has the chemical structure (−C≡C−)n as a repeat unit, with alternating single and triple bonds. It would thus be the ultimate member of the polyyne family.

A buckyball or buckminsterfullerene is a molecule resembling a soccer ball composed of 60 carbon atoms.

Azafullerenes are a class of heterofullerenes in which the element substituting for carbon is nitrogen. They can be in the form of a hollow sphere, ellipsoid, tube, and many other shapes. Spherical azafullerenes resemble the balls used in football (soccer). They are also a member of the carbon nitride class of materials that include beta carbon nitride (β-C3N4), predicted to be harder than diamond. Besides the pioneering work of a couple of academic groups, this class of compounds has so far garnered little attention from the broader fullerene research community. Many properties and structures are yet to be discovered for the highly-nitrogen substituted subset of molecules.

<span class="mw-page-title-main">Borospherene</span> Chemical compound

Borospherene (B40) is a cluster molecule containing 40 boron atoms. It is similar to buckminsterfullerene, the "spherical" carbon structure, but with a different symmetry. The discovery of borospherene was announced in July 2014, and is described in the journal Nature Chemistry. Borospherene is similar to other cluster molecules, including buckminsterfullerene (C60), stannaspherene, and plumbaspherene. The molecule includes unusual heptagonal faces.

<span class="mw-page-title-main">Nanocluster</span> Collection of bound atoms or molecules ≤3 nm in diameter

Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials. These nanoclusters can be composed either of a single or of multiple elements, and exhibit interesting electronic, optical, and chemical properties compared to their larger counterparts.

<span class="mw-page-title-main">Konstantinos Fostiropoulos</span> Greek physicist

Konstantinos Fostiropoulos is a Greek physicist who has been working in Germany in the areas nano-materials, solid-state physics, molecular physics, astrophysics, and thermodynamics. From 2003 to 2016 he has been founder and head of the Organic Solar Cells Group at the Institute Heterogeneous Materials Systems within the Helmholtz-Zentrum Berlin. His scientific works include novel energy materials and photovoltaic device concepts, carbon clusters in the Interstellar Medium, and intermolecular forces of real gases.

<span class="mw-page-title-main">Solubility of fullerenes</span>

The solubility of fullerenes is generally low. Carbon disulfide dissolves 8g/L of C60, and the best solvent (1-chloronaphthalene) dissolves 53 g/L. up Still, fullerenes are the only known allotrope of carbon that can be dissolved in common solvents at room temperature. Besides those two, good solvents for fullerenes include 1,2-dichlorobenzene, toluene, p-xylene, and 1,2,3-tribromopropane. Fullerenes are highly insoluble in water, and practically insoluble in methanol.

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 325. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  2. Eiji Ōsawa (2002). Perspectives of fullerene nanotechnology. Springer. pp. 275–. ISBN   978-0-7923-7174-8 . Retrieved 26 December 2011.
  3. 1 2 3 Thirunavukkuarasu, K.; Long, V. C.; Musfeldt, J. L.; Borondics, F.; Klupp, G.; Kamarás, K.; Kuntscher, C. A. (2011). "Rotational Dynamics in C70: Temperature- and Pressure-Dependent Infrared Studies". The Journal of Physical Chemistry C. 115 (9): 3646–3653. doi:10.1021/jp200036t.
  4. Press Release. Nobel Prize Foundation. 9 October 1996
  5. 1 2 Katz, 363
  6. Katz, 368
  7. Katz, 369–370
  8. Rao, C.N.R.; Seshadri, Ram; Govindaraj, A.; Sen, Rahul (1995). "Fullerenes, nanotubes, onions and related carbon structures". Materials Science and Engineering: R. 15 (6): 209–262. doi:10.1016/S0927-796X(95)00181-6.
  9. Buckminsterfullerene, C60. University of Bristol. Chm.bris.ac.uk (1996-10-13). Retrieved on 2011-12-25.
  10. Bezmel'nitsyn, V.N.; Eletskii, A.V.; Okun', M.V. (1998). "Fullerenes in solutions". Physics-Uspekhi . 41 (11): 1091. Bibcode:1998PhyU...41.1091B. doi:10.1070/PU1998v041n11ABEH000502.
  11. Talyzin, A.V.; Engström, I. (1998). "C70 in Benzene, Hexane, and Toluene Solutions". Journal of Physical Chemistry B . 102 (34): 6477. doi:10.1021/jp9815255.
  12. 1 2 Verheijen, M.A.; Meekes, H.; Meijer, G.; Bennema, P.; De Boer, J.L.; Van Smaalen, S.; Van Tendeloo, G.; Amelinckx, S.; Muto, S.; Van Landuyt, J. (1992). "The structure of different phases of pure C70 crystals" (PDF). Chemical Physics. 166 (1–2): 287–297. Bibcode:1992CP....166..287V. doi:10.1016/0301-0104(92)87026-6. hdl: 2066/99047 .
  13. Fabiański, Robert; Firlej, Lucyna; Zahab, Ahmed; Kuchta, Bogdan (2002). "Relationships between crystallinity, oxygen diffusion and electrical conductivity of evaporated C70 thin films". Solid State Sciences. 4 (8): 1009–1015. Bibcode:2002SSSci...4.1009F. doi:10.1016/S1293-2558(02)01358-4.
  14. Katz, 372
  15. Haddon, R. C.; Hebard, A. F.; Rosseinsky, M. J.; Murphy, D. W.; Duclos, S. J.; Lyons, K. B.; Miller, B.; Rosamilia, J. M.; Fleming, R. M.; Kortan, A. R.; Glarum, S. H.; Makhija, A. V.; Muller, A. J.; Eick, R. H.; Zahurak, S. M.; Tycko, R.; Dabbagh, G.; Thiel, F. A. (1991). "Conducting films of C60 and C70 by alkali-metal doping". Nature. 350 (6316): 320–322. Bibcode:1991Natur.350..320H. doi:10.1038/350320a0. S2CID   4331074.

Bibliography