Names | |
---|---|
Preferred IUPAC name Heptane [1] | |
Other names Septane [2] | |
Identifiers | |
3D model (JSmol) | |
1730763 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
EC Number |
|
49760 | |
MeSH | n-heptane |
PubChem CID | |
RTECS number |
|
UNII | |
UN number | 1206 |
| |
| |
Properties | |
C7H16 | |
Molar mass | 100.205 g·mol−1 |
Appearance | Colourless liquid |
Odor | Petrolic |
Density | 0.6795 g cm−3 [3] |
Melting point | −90.549 [3] °C (−130.988 °F; 182.601 K) |
Boiling point | 98.38 [3] °C (209.08 °F; 371.53 K) |
0.0003% (20 °C) [4] | |
log P | 4.274 |
Vapor pressure | 5.33 kPa (at 20.0 °C) |
Henry's law constant (kH) | 12 nmol Pa−1 kg−1 |
−85.24·10−6 cm3/mol | |
Refractive index (nD) | 1.3855 [3] |
Viscosity | 0.389 mPa·s [5] |
0.0 D | |
Thermochemistry | |
Heat capacity (C) | 224.64 J K−1 mol−1 |
Std molar entropy (S⦵298) | 328.57 J K−1 mol−1 |
Std enthalpy of formation (ΔfH⦵298) | −225.2 – −223.6 kJ mol−1 |
Std enthalpy of combustion (ΔcH⦵298) | −4.825 – −4.809 MJ mol−1 |
Hazards | |
GHS labelling: | |
Danger | |
H225, H304, H315, H336, H410 | |
P210, P261, P273, P301+P310, P331 | |
NFPA 704 (fire diamond) | |
Flash point | −4.0 °C (24.8 °F; 269.1 K) |
223.0 °C (433.4 °F; 496.1 K) | |
Explosive limits | 1.05–6.7% |
Lethal dose or concentration (LD, LC): | |
LC50 (median concentration) | 17,986 ppm (mouse, 2 hr) [6] |
LCLo (lowest published) | 16,000 ppm (human) 15,000 ppm (mouse, 30 min) [6] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 500 ppm (2000 mg/m3) [4] |
REL (Recommended) | TWA 85 ppm (350 mg/m3) C 440 ppm (1800 mg/m3) [15-minute] [4] |
IDLH (Immediate danger) | 750 ppm [4] |
Related compounds | |
Related alkanes | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Heptane or n-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 point is 100% iso-octane). Octane number equates to the anti-knock qualities of a comparison mixture of heptane and iso-octane which is expressed as the percentage of iso-octane in heptane, and is listed on pumps for gasoline (petrol) dispensed globally.
Normal heptane was discovered in 1862 by Carl Schorlemmer, who, while analyzing pyrolysis products of the cannel coal mined in Wigan, identified, separated by fractional distillation and studied a series of liquid hydrocarbons inert to nitric and sulfuric acids. One of them, which he called hydride ofheptyl (oenanthyl), had an empirical formula of C7H16, density of 0.709 at 18 °C and boiled between 98 and 99 °C. [7] In the next year he identified the same compound in the Pennsylvanian oil. [8] By 1872 he switched his nomenclature to the modern one. [9]
During the American Civil War and shortly thereafter Californians discovered that some pines gave turpentine with unusual properties. It took until 1879 to identify heptane as the cause of that (see below for details), and only by the end of the century was this fact accepted by European chemists. [10]
Heptane and its many isomers are widely used in laboratories as a non-polar solvent. [11] As a liquid, it is ideal for transport and storage. In the grease spot test, heptane is used to dissolve an oil spot to show the previous presence of organic compounds on a stained paper. This is done by shaking the stained paper in a heptane solution for about half a minute.[ citation needed ]
Aqueous bromine may be distinguished from aqueous iodine by its appearance after extraction into heptane. In water, both bromine and iodine appear brown. However, iodine turns purple when dissolved in heptane, whereas the bromine solution remains brown.
Heptane is commercially available as both pure and mixed isomers for use in paints and coatings, as the rubber cement solvent "Bestine" [12] , the outdoor stove fuel "Powerfuel" by Primus, as pure n-heptane for research and development and pharmaceutical manufacturing and as a minor component of gasoline (petrol). On average, gasoline is about 1% heptane. [13] [14]
Heptane is also used as an adhesive remover by stamp collectors. Since 1974, the United States Postal Service has issued self-adhesive stamps that some collectors find difficult to separate from envelopes via the traditional method of soaking in water. Heptane-based products like Bestine, as well as limonene-based products, have become popular solvents for removing stamps more easily. [15]
n-Heptane is defined as the zero point of the octane rating scale. It is a lighter component in gasoline and burns more explosively, causing engine pre-ignition (knocking) in its pure form, as opposed to octane isomers, which burn more slowly and give less knocking. It was originally chosen as the zero point of the scale because of the availability of very high purity n-heptane, unmixed with other isomers of heptane or other alkanes, distilled from the resin of Jeffrey pine and from the fruit of Pittosporum resiniferum . Other sources of heptane and octane, produced from crude oil, contain a mixture of different isomers with greatly differing ratings, and do not give as precise a zero point.
Heptane has nine isomers, or eleven if enantiomers are counted:
The linear n-heptane can be obtained from Jeffrey pine oil. [17] The six branched isomers without a quaternary carbon can be prepared by creating a suitable secondary or tertiary alcohol by the Grignard reaction, converting it to an alkene by dehydration, and hydrogenating the latter. [17] The 2,2-dimethylpentane isomer can be prepared by reacting tert-butyl chloride with n-propyl magnesium bromide. [17] The 3,3-dimethylpentane isomer can be prepared from tert-amyl chloride and ethyl magnesium bromide. [17]
This section needs expansion. You can help by adding to it. (June 2015) |
Acute exposure to heptane vapors can cause dizziness, stupor, incoordination, loss of appetite, nausea, dermatitis, chemical pneumonitis, unconsciousness, or possible peripheral neuropathy. [18]
In a CDC study, it was found that prolonged exposure to heptane may also cause a state of intoxication and uncontrolled hilarity in some participants and a stupor lasting for 30 minutes after exposure for others. [19] Prolonged exposure can also lead to skin dryness or cracking, since the substance defats skin. [20]
According to information from the New Jersey Department of Health and Senior Services, n-heptane can penetrate the skin, and further health effects may occur immediately or shortly after exposure to it. Exposure to n-heptane may lead to short-term health effects like irritation of the eyes, nose, or throat, headache, dizziness, or loss of consciousness; and chronic health effects, like reduced memory and concentration, sleep disturbance, and reduced coordination due to its effects on the nervous system. [21]
Upon chronic exposure, it can pose a reproductive hazard or cancer risks. [22]
Route | Side Effects | First Aid Procedure |
---|---|---|
Ingestion | Nausea, diarrhea, headache, stomach pain, intoxication, heart failure | Seek medical attention |
Eye Contamination | Irritation | Immediate irrigation |
Skin Contamination | Irritaion, dermatitis; can be absorbed and produce similar effects to inhalation | Immediate wash with soap |
Inhalation | Irritation, coughing, difficulty breathing, headache, drowsiness, dizziness, unconsciousness, coma, death | Respiratory support |
In organic chemistry, an alkane, or paraffin, is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane, where n = 1, to arbitrarily large and complex molecules, like pentacontane or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane.
Toluene, also known as toluol, is a substituted aromatic hydrocarbon with the chemical formula C6H5CH3, often abbreviated as PhCH3, where Ph stands for the phenyl group. It is a colorless, water-insoluble liquid with the odor associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) attached to a phenyl group by a single bond. As such, its systematic IUPAC name is methylbenzene. Toluene is predominantly used as an industrial feedstock and a solvent.
Hexane or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C6H14.
Octane is a hydrocarbon and also an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane), is used as one of the standard values in the octane rating scale.
Isobutane, also known as i-butane, 2-methylpropane or methylpropane, is a chemical compound with molecular formula HC(CH3)3. It is an isomer of butane. Isobutane is a colorless, odorless gas. It is the simplest alkane with a tertiary carbon atom. Isobutane is used as a precursor molecule in the petrochemical industry, for example in the synthesis of isooctane.
Pentane is an organic compound with the formula C5H12—that is, an alkane with five carbon atoms. The term may refer to any of three structural isomers, or to a mixture of them: in the IUPAC nomenclature, however, pentane means exclusively the n-pentane isomer, in which case pentanes refers to a mixture of them; the other two are called isopentane (methylbutane) and neopentane (dimethylpropane). Cyclopentane is not an isomer of pentane because it has only 10 hydrogen atoms where pentane has 12.
Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.
tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.
Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH3)2CHCH2OH (sometimes represented as i-BuOH). This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either directly or as its esters. Its isomers are 1-butanol, 2-butanol, and tert-butanol, all of which are important industrially.
1-Propanol is a primary alcohol with the formula CH3CH2CH2OH and sometimes represented as PrOH or n-PrOH. It is a colourless liquid and an isomer of 2-propanol. 1-Propanol is used as a solvent in the pharmaceutical industry, mainly for resins and cellulose esters, and, sometimes, as a disinfecting agent.
2,2-Dimethylbutane, trivially known as neohexane at William Odling's 1876 suggestion, is an organic compound with formula C6H14 or (H3C-)3-C-CH2-CH3. It is therefore an alkane, indeed the most compact and branched of the hexane isomers — the only one with a quaternary carbon and a butane (C4) backbone.
1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C4H9OH and a linear structure. Isomers of 1-butanol are isobutanol, butan-2-ol and tert-butanol. The unmodified term butanol usually refers to the straight chain isomer.
1,2-Dichlorobenzene, or orthodichlorobenzene (ODCB), is an aryl chloride and isomer of dichlorobenzene with the formula C6H4Cl2. This colourless liquid is poorly soluble in water but miscible with most organic solvents. It is a derivative of benzene, consisting of two adjacent chlorine atoms.
2-Methylhexane (C7H16, also known as isoheptane, ethylisobutylmethane) is an isomer of heptane. It is structurally a hexane molecule with a methyl group attached to its second carbon atom. It exists in most commercially available heptane merchandises as an impurity but is usually not considered as impurity in terms of reactions since it has very similar physical and chemical properties when compared to n-heptane (straight-chained heptane).
n-Butylamine is an organic compound (specifically, an amine) with the formula CH3(CH2)3NH2. This colourless liquid is one of the four isomeric amines of butane, the others being sec-butylamine, tert-butylamine, and isobutylamine. It is a liquid having the fishy, ammonia-like odor common to amines. The liquid acquires a yellow color upon storage in air. It is soluble in all organic solvents. Its vapours are heavier than air and it produces toxic oxides of nitrogen during combustion.
Triptane, or 2,2,3-trimethylbutane, is an organic chemical compound with the molecular formula C7H16 or (H3C-)3C-C(-CH3)2H. It is therefore an alkane, specifically the most compact and heavily branched of the heptane isomers, the only one with a butane (C4) backbone.
Butane is an alkane with the formula C4H10. Butane exists as two isomers, n-butane with connectivity CH3CH2CH2CH3 and iso-butane with the formula (CH3)3CH. Both isomers are highly flammable, colorless, easily liquefied gases that quickly vaporize at room temperature and pressure. Butanes are a trace components of natural gases (NG gases). The other hydrocarbons in NG include propane, ethane, and especially methane, which are more abundant. Liquefied petroleum gas is a mixture of propane and some butanes.
2,2-Dimethylpentane is one of the isomers of heptane. It is also called neoheptane as it contains the (CH3)3C grouping. It has the most extreme properties of the isomers of heptane.
Bis(2-ethylhexyl) maleate is the chemical compound with the structural formula (H3C 3−CH −CH2−O−C −CH=)2, where the two carboxylate groups are mutually cis. It can be described as the double ester of maleic acid with the alcohol 2-ethylhexanol. It is commonly called dioctyl maleate (DOM), reflecting the older usage of "octane" to refer to any 8-carbon alkane, straight-chained or branched.
2,3-Dimethylpentane is an organic compound of carbon and hydrogen with formula C
7H
16, more precisely CH
3–CH(CH
3)–CH(CH
3)–CH
2–CH
3: a molecule of pentane with methyl groups –CH
3 replacing hydrogen atoms on carbon atoms 2 and 3. It is an alkane, a fully saturated hydrocarbon; specifically, one of the isomers of heptane.