Diborane(2)

Last updated
Diborane(2)
Diborene.svg
Diborene-3D-balls.png
Names
IUPAC name
Diborene
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/B2H2/c1-2/h1-2H
    Key: HWGHUECIBSMKRW-UHFFFAOYSA-N
  • B=B
Properties
B2H2
Molar mass 23.64 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diborane(2), also known as diborene, is an inorganic compound with the formula B2H2. The number 2 in diborane(2) indicates the number of hydrogen atoms bonded to the boron complex. There are other forms of diborane with different numbers of hydrogen atoms, including diborane(4) and diborane(6).

Contents

Diborane(2) is a highly reactive molecule that rapidly decomposes, making it a challenge to study experimentally under ambient conditions. To observe diborane(2) experimentally, high-vacuum and low temperature conditions using matrix isolation techniques are required, such as trapping the molecule in inert matrices like neon or argon. [1] [2] As a result of these difficult synthesis conditions, its properties and behaviour have been predominantly studied using theoretical models and computational simulations.

Diborene also refers to a series of molecules with the formula R:(BH)=(BH):R or R-B=B-R where R is an organic group. [3] [4] Diborene derivatives are relatively stable and can be stored at room temperature under inert conditions. They have been synthesized and characterized experimentally, and have shown potential in a variety of applications.

Synthesis

The first experiment that lead to the synthesis of diborane(2) was via pulsed laser ablation of boron in a mixed hydrogen-argon gas atmosphere. [1] Upon cooling the mixture, the argon gas changed into a solid, thereby stabilizing the trapped diboranes. The reaction involved two boron monohydrides coming together to form diborane(2), with the reaction being exothermic by 117kcal/mol. The diborane(2) was characterized by a broad band with a sharp peak at 2679.9 cm–1, corresponding to the antisymmetric stretching mode of B-H.

Following this experiment, there have been other methods of diborane(2) preparation by decomposition of gaseous B2H6 via photoionization, electron bombardment, X-irradiation, high-temperature reactions, and pulsed laser vaporization. [2]

Since diborene derivatives are more stable than diborane(2), various methods have been used to synthesize them. They have been primarily made by reacting diboron compounds with organic molecules and the reduction of boron-containing precursors. [5] [6] Additionally, the diborene group can be protected by a suitable ligand, which prevents other side reactions. [7]

Structure and Properties

A combination of experimental and theoretical data has been used to determine the structure and properties of diborane(2).

Theoretical data found that the molecule has a 3Σ-g ground state conformation, indicating a particular orientation with threefold rotational symmetry and a vertical mirror plane. [8] It maintains its structure when rotated 180 degrees about an axis perpendicular to the mirror plane, and has a Dh symmetry point group.

This theoretical data was confirmed experimentally, which found the molecule to be linear with a triplet ground state, as revealed by electron paramagnetic resonance. [2] The study noted that the molecule is similar to acetylene, with one electron removed from each of the pi molecular orbitals. Therefore, the molecular orbital diagram contains electrons in three orbitals; including a sigma bonding orbital with paired electrons at the lowest energy level, and two degenerate pi bonding orbitals that each have an unpaired electron. Thus, the B-B bond has a partial double bond character, explaining the high reactivity of these compounds.

Applications

Diborenes have potential applications in materials science, catalysis and sustainable energy chemistry.

According to theoretical studies, diborane(2) has potential applications in nanodevices. It is predicted that diborane(2) nanoribbons are structurally stable and semiconducting due to its flexible band tunability. [9] Another theoretical study developed an optimization-based technique for designing and analyzing a B2H2 system that use biomass to produce hydrogen, which they found could be a viable option for a sustainable energy system. [10]

Diborene derivatives have been used extensively in catalysis. They have been found to catalyze hydroboration reactions, with the reaction being chemoselective. [11] Additionally, diborenes can undergo inorganic–organic cross-metathesis reactions to afford a B,N-doped complex. [12]

Related Research Articles

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), commonly known as diborane, is the chemical compound with the formula B2H6. It is a highly toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Given its simple formula, borane is a fundamental boron compound. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

In chemistry, a hypervalent molecule is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pentachloride, sulfur hexafluoride, chlorine trifluoride, the chlorite ion in chlorous acid and the triiodide ion are examples of hypervalent molecules.

A three-center two-electron (3c–2e) bond is an electron-deficient chemical bond where three atoms share two electrons. The combination of three atomic orbitals form three molecular orbitals: one bonding, one non-bonding, and one anti-bonding. The two electrons go into the bonding orbital, resulting in a net bonding effect and constituting a chemical bond among all three atoms. In many common bonds of this type, the bonding orbital is shifted towards two of the three atoms instead of being spread equally among all three. Example molecules with 3c–2e bonds are the trihydrogen cation and diborane. In these two structures, the three atoms in each 3c-2e bond form an angular geometry, leading to a bent bond.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry studies organoboron compounds, also called organoboranes. These chemical compounds combine boron and carbon; typically, they are organic derivatives of borane (BH3), as in the trialkyl boranes.

<span class="mw-page-title-main">Borazine</span> Boron compound

Borazine, also known as borazole, is an inorganic compound with the chemical formula B3H6N3. In this cyclic compound, the three BH units and three NH units alternate. The compound is isoelectronic and isostructural with benzene. For this reason borazine is sometimes referred to as “inorganic benzene”. Like benzene, borazine is a colourless liquid with an aromatic odor.

The 3-center 4-electron (3c–4e) bond is a model used to explain bonding in certain hypervalent molecules such as tetratomic and hexatomic interhalogen compounds, sulfur tetrafluoride, the xenon fluorides, and the bifluoride ion. It is also known as the Pimentel–Rundle three-center model after the work published by George C. Pimentel in 1951, which built on concepts developed earlier by Robert E. Rundle for electron-deficient bonding. An extended version of this model is used to describe the whole class of hypervalent molecules such as phosphorus pentafluoride and sulfur hexafluoride as well as multi-center π-bonding such as ozone and sulfur trioxide.

<span class="mw-page-title-main">Boroxine</span> 6-sided cyclic compound of oxygen and boron

Boroxine is a 6-membered heterocyclic compound composed of alternating oxygen and singly-hydrogenated boron atoms. Boroxine derivatives such as trimethylboroxine and triphenylboroxine also make up a broader class of compounds called boroxines. These compounds are solids that are usually in equilibrium with their respective boronic acids at room temperature. Beside being used in theoretical studies, boroxine is primarily used in the production of optics.

Boroles represent a class of molecules known as metalloles, which are heterocyclic 5-membered rings. As such, they can be viewed as structural analogs of cyclopentadiene, pyrrole or furan, with boron replacing a carbon, nitrogen and oxygen atom respectively. They are isoelectronic with the cyclopentadienyl cation C5H+5 or abbreviated as Cp+ and comprise four π electrons. Although Hückel's rule cannot be strictly applied to borole, it is considered to be antiaromatic due to having 4 π electrons. As a result, boroles exhibit unique electronic properties not found in other metalloles.

<span class="mw-page-title-main">Boranylium ions</span>

In chemistry, a boranylium ion is an inorganic cation with the chemical formula BR+
2
, where R represents a non-specific substituent. Being electron-deficient, boranylium ions form adducts with Lewis bases. Boranylium ions have historical names that depend on the number of coordinated ligands:

Borane, also known as borine, is an unstable and highly reactive molecule with the chemical formula BH
3
. The preparation of borane carbonyl, BH3(CO), played an important role in exploring the chemistry of boranes, as it indicated the likely existence of the borane molecule. However, the molecular species BH3 is a very strong Lewis acid. Consequently, it is highly reactive and can only be observed directly as a continuously produced, transitory, product in a flow system or from the reaction of laser ablated atomic boron with hydrogen. It normally dimerizes to diborane in the absence of other chemicals.

<span class="mw-page-title-main">Tetramethyldiborane</span> Chemical compound

Dimethylborane, (CH3)2BH is the simplest dialkylborane, consisting of a methyl group substituted for a hydrogen in borane. As for other boranes it normally exists in the form of a dimer called tetramethyldiborane or tetramethylbisborane or TMDB ((CH3)2BH)2. Other combinations of methylation occur on diborane, including monomethyldiborane, trimethyldiborane, 1,2-dimethylborane, 1,1-dimethylborane and trimethylborane. At room temperature the substance is at equilibrium between these forms. The methylboranes were first prepared by H. I. Schlesinger and A. O. Walker in the 1930s.

<span class="mw-page-title-main">Borylene</span>

A borylene is the boron analogue of a carbene. The general structure is R-B: with R an organic moiety and B a boron atom with two unshared electrons. Borylenes are of academic interest in organoboron chemistry. A singlet ground state is predominant with boron having two vacant sp2 orbitals and one doubly occupied one. With just one additional substituent the boron is more electron deficient than the carbon atom in a carbene. For this reason stable borylenes are more uncommon than stable carbenes. Some borylenes such as boron monofluoride (BF) and boron monohydride (BH) the parent compound also known simply as borylene, have been detected in microwave spectroscopy and may exist in stars. Other borylenes exist as reactive intermediates and can only be inferred by chemical trapping.

<span class="mw-page-title-main">Borane carbonyl</span> Chemical compound

Borane carbonyl is the inorganic compound with the formula H3BCO. This colorless gas is the adduct of borane and carbon monoxide. It is usually prepared by combining borane-ether complexes and CO. The compound is mainly of theoretical and pedagogical interest.

In chemistry, a chalcogen bond (ChB) is an attractive interaction in the family of σ-hole interactions, along with halogen bonds. Electrostatic, charge-transfer (CT) and dispersion terms have been identified as contributing to this type of interaction. In terms of CT contribution, this family of attractive interactions has been modeled as an electron donor interacting with the σ* orbital of a C-X bond of the bond donor. In terms of electrostatic interactions, the molecular electrostatic potential (MEP) maps is often invoked to visualize the electron density of the donor and an electrophilic region on the acceptor, where the potential is depleted, referred to as a σ-hole. ChBs, much like hydrogen and halogen bonds, have been invoked in various non-covalent interactions, such as protein folding, crystal engineering, self-assembly, catalysis, transport, sensing, templation, and drug design.

<span class="mw-page-title-main">Field effect (chemistry)</span>

A field effect is the polarization of a molecule through space. The effect is a result of an electric field produced by charge localization in a molecule. This field, which is substituent and conformation dependent, can influence structure and reactivity by manipulating the location of electron density in bonds and/or the overall molecule. The polarization of a molecule through its bonds is a separate phenomenon known as induction. Field effects are relatively weak, and diminish rapidly with distance, but have still been found to alter molecular properties such as acidity.

Intrinsic bond orbitals (IBO) are localized molecular orbitals giving exact and non-empirical representations of wave functions. They are obtained by unitary transformation and form an orthogonal set of orbitals localized on a minimal number of atoms. IBOs present an intuitive and unbiased interpretation of chemical bonding with naturally arising Lewis structures. For this reason IBOs have been successfully employed for the elucidation of molecular structures and electron flow along the intrinsic reaction coordinate (IRC). IBOs have also found application as Wannier functions in the study of solids.

<i>N</i>-Heterocyclic carbene boryl anion Isoelectronic structure

An N-heterocyclic carbene boryl anion is an isoelectronic structure of an N-heterocyclic carbene (NHC), where the carbene carbon is replaced with a boron atom that has a -1 charge. NHC boryl anions have a planar geometry, and the boron atom is considered to be sp2-hybridized. They serve as extremely strong bases, as they are very nucleophilic. They also have a very strong trans influence, due to the σ-donation coming from the boron atom. NHC boryl anions have stronger electron-releasing character when compared to normal NHCs. These characteristics make NHC boryl anions key ligands in many applications, such as polycyclic aromatic hydrocarbons, and more commonly low oxidation state main group element bonding.

<span class="mw-page-title-main">Diphosphadiboretanes</span> Chemical compound

1,3-Diphospha-2,4-diboretanes, or B2P2, is a class of 4-member cyclic compounds of alternating boron and phosphorus atoms. They are often found as dimers during the synthesis of boraphosphenes (RB=PR'). Compounds can exhibit localized singlet diradical character (diradicaloid) between the boron atoms in the solution and solid state.

Heteroatomic multiple bonding between group 13 and group 15 elements are of great interest in synthetic chemistry due to their isoelectronicity with C-C multiple bonds. Nevertheless, the difference of electronegativity between group 13 and 15 leads to different character of bondings comparing to C-C multiple bonds. Because of the ineffective overlap between p𝝅 orbitals and the inherent lewis acidity/basicity of group 13/15 elements, the synthesis of compounds containing such multiple bonds is challenging and subject to oligomerization. The most common example of compounds with 13/15 group multiple bonds are those with B=N units. The boron-nitrogen-hydride compounds are candidates for hydrogen storage. In contrast, multiple bonding between aluminium and nitrogen Al=N, Gallium and nitrogen (Ga=N), boron and phosphorus (B=P), or boron and arsenic (B=As) are less common.

Main-group element-mediated activation of dinitrogen is the N2 activation facilitated by reactive main group element centered molecules (e.g., low valent main group metal calcium, dicoordinate borylene, boron radical, carbene, etc.).

References

  1. 1 2 Tague, Thomas J.; Andrews, Lester (1994). "Reactions of Pulsed-Laser Evaporated Boron Atoms with Hydrogen. Infrared Spectra of Boron Hydride Intermediate Species in Solid Argon". Journal of the American Chemical Society. 116 (11): 4970–4976. doi:10.1021/ja00090a048. ISSN   0002-7863.
  2. 1 2 3 Knight, Lon B.; Kerr, Kelly; Miller, P. K.; Arrington, C. A. (1995). "ESR Investigation of the HBBH(X3.SIGMA.) Radical in Neon and Argon Matrixes at 4 K. Comparison with ab Initio SCF and CI Calculations". The Journal of Physical Chemistry. 99 (46): 16842–16848. doi:10.1021/j100046a009. ISSN   0022-3654.
  3. Wang, Yuzhong; Quillian, Brandon; Wei, Pingrong; Wannere, Chaitanya S.; Xie, Yaoming; King, R. Bruce; Schaefer, Henry F.; Schleyer, Paul v. R.; Robinson, Gregory H. (2007-10-01). "A Stable Neutral Diborene Containing a BB Double Bond". Journal of the American Chemical Society. 129 (41): 12412–12413. doi:10.1021/ja075932i. ISSN   0002-7863. PMID   17887683.
  4. Borthakur, Rosmita; Saha, Koushik; Kar, Sourav; Ghosh, Sundargopal (2019-11-15). "Recent advances in transition metal diborane(6), diborane(4) and diborene(2) chemistry". Coordination Chemistry Reviews. 399: 213021. doi:10.1016/j.ccr.2019.213021. ISSN   0010-8545. S2CID   202880767.
  5. Okorn, Alexander; Jayaraman, Arumugam; Englert, Lukas; Arrowsmith, Merle; Swoboda, Theresa; Weigelt, Jeanette; Brunecker, Carina; Hess, Merlin; Lamprecht, Anna; Lenczyk, Carsten; Rang, Maximilian; Braunschweig, Holger (2022-06-29). "Synthesis and hydrogenation of polycyclic aromatic hydrocarbon-substituted diborenes via uncatalysed hydrogenative B–C bond cleavage". Chemical Science. 13 (25): 7566–7574. doi:10.1039/D2SC02515A. ISSN   2041-6539. PMC   9242019 . PMID   35872817.
  6. Lu, Wei; Jayaraman, Arumugam; Fantuzzi, Felipe; Dewhurst, Rian D.; Härterich, Marcel; Dietz, Maximilian; Hagspiel, Stephan; Krummenacher, Ivo; Hammond, Kai; Cui, Jingjing; Braunschweig, Holger (2022-01-17). "An Unsymmetrical, Cyclic Diborene Based on a Chelating CAAC Ligand and its Small-Molecule Activation and Rearrangement Chemistry". Angewandte Chemie International Edition. 61 (3): e202113947. doi:10.1002/anie.202113947. ISSN   1433-7851. PMC   9299934 . PMID   34750945.
  7. Bissinger, Philipp; Braunschweig, Holger; Celik, Mehmet Ali; Claes, Christina; Dewhurst, Rian D.; Endres, Sebastian; Kelch, Hauke; Kramer, Thomas; Krummenacher, Ivo; Schneider, Christoph (2015-10-22). "Synthesis of cyclic diborenes with unprecedented cis-configuration". Chemical Communications. 51 (88): 15917–15920. doi:10.1039/C5CC07103H. ISSN   1364-548X. PMID   26360103.
  8. Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. (1975). "Molecular orbital theory of the electron structure of organic compounds. XXIV. Geometries and energies of small boron compounds. Comparisons with carbocations". Journal of the American Chemical Society. 97 (12): 3402–3409. doi:10.1021/ja00845a021. ISSN   0002-7863.
  9. Cho, Seolhee; Woo, Young-bin; Kim, Byung Soo; Kim, Jiyong (2016-04-01). "Optimization-based planning of a biomass to hydrogen (B2H2) system using dedicated energy crops and waste biomass". Biomass and Bioenergy. 87: 144–155. Bibcode:2016BmBe...87..144C. doi:10.1016/j.biombioe.2016.02.025. ISSN   0961-9534.
  10. Lei, Bao; Zhang, Yu-Yang; Du, Shi-Xuan (2019). "Band engineering of B 2 H 2 nanoribbons". Chinese Physics B. 28 (4): 046803. doi:10.1088/1674-1056/28/4/046803. ISSN   1674-1056. S2CID   250797835.
  11. Fan, Jun; Mah, Jian-Qiang; Yang, Ming-Chung; Su, Ming-Der; So, Cheuk-Wai (2021-04-07). "A N -Phosphinoamidinato NHC-Diborene Catalyst for Hydroboration". Journal of the American Chemical Society. 143 (13): 4993–5002. doi:10.1021/jacs.0c12627. hdl: 10356/149733 . ISSN   0002-7863. PMID   33448848. S2CID   231611304.
  12. Härterich, Marcel; Ritschel, Benedikt; Arrowsmith, Merle; Böhnke, Julian; Krummenacher, Ivo; Phukan, Ashwini K.; Braunschweig, Holger (2021-11-03). "Hybrid Inorganic–Organic Cross-Metathesis between Diborenes and Acetylene". Journal of the American Chemical Society. 143 (43): 18339–18345. doi:10.1021/jacs.1c10131. ISSN   0002-7863. PMID   34677063. S2CID   239457905.