Hydrogen diselenide

Last updated
Hydrogen diselenide
Hydrogen diselenide's ball and stick model Hydrogen-diselenide-3D-balls.png
Hydrogen diselenide’s ball and stick model
  Selenium, Se
  Hydrogen, H
Hydrogen diselenide's space filling model Hydrogen-diselenide-3D-vdW.png
Hydrogen diselenide’s space filling model
IUPAC name
Dihydrogen diselenide
Other names
3D model (JSmol)
PubChem CID
  • InChI=1S/H2S2/c1-2/h1-2H Yes check.svgY
  • InChI=1S/H2Se2/c1-2/h1-2H
  • [SeH][SeH]
Molar mass 159.958 g·mol−1
Appearanceoily liquid
Flash point Flammable
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hydrogen diselenide is an inorganic selenium compound with a chemical formula H2Se2 or (SeH)2. [1] [2] At room temperature, hydrogen diselenide dissociates easily to hydrogen selenide (H2Se) and elemental selenium, and is therefore not stable. However, hydrogen diselenide can be stable in some solutions. [3]

Related Research Articles

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Selenium</span> Chemical element, symbol Se and atomic number 34

Selenium is a chemical element; it has symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, and also has similarities to arsenic. It seldom occurs in its elemental state or as pure ore compounds in Earth's crust. Selenium was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium.

A selenide is a chemical compound containing a selenium with oxidation number of −2. Similar to sulfide, selenides occur both as inorganic compounds and as organic derivatives, which are called organoselenium compound.

<span class="mw-page-title-main">Hydrogen selenide</span> Chemical compound

Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound with an exposure limit of 0.05 ppm over an 8-hour period. Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or 'leaking gas', but smells of rotten eggs at higher concentrations.

Organoselenium chemistry is the science exploring the properties and reactivity of organoselenium compounds, chemical compounds containing carbon-to-selenium chemical bonds. Selenium belongs with oxygen and sulfur to the group 16 elements or chalcogens, and similarities in chemistry are to be expected. Organoselenium compounds are found at trace levels in ambient waters, soils and sediments.

<span class="mw-page-title-main">Aluminium selenide</span> Chemical compound

Aluminium selenide is the inorganic compound with the formula Al2Se3.

Selenium oxydichloride is the inorganic compound with the formula SeOCl2. It is a colorless liquid. With a high dielectric constant (55) and high specific conductance, it is an attractive solvent. Structurally, it is a close chemical relative of thionyl chloride SOCl2, being a pyramidal molecule.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

<span class="mw-page-title-main">Carbon diselenide</span> Chemical compound

Carbon diselenide is an inorganic compound with the chemical formula CSe2. It is a yellow-orange oily liquid with pungent odor. It is the selenium analogue of carbon disulfide and carbon dioxide. This light-sensitive compound is insoluble in water and soluble in organic solvents.

<span class="mw-page-title-main">Sodium selenide</span> Chemical compound

Sodium selenide is an inorganic compound of sodium and selenium with the chemical formula Na2Se.

<span class="mw-page-title-main">Selenenic acid</span> Class of chemical compounds

A selenenic acid is an organoselenium compound and an oxoacid with the general formula RSeOH, where R ≠ H. It is the first member of the family of organoselenium oxoacids, which also include seleninic acids and selenonic acids, which are RSeO2H and RSeO3H, respectively. Selenenic acids derived from selenoenzymes are thought to be responsible for the antioxidant activity of these enzymes. This functional group is sometimes called SeO-selenoperoxol.

<span class="mw-page-title-main">Titanium diselenide</span> Chemical compound

Titanium diselenide (TiSe2) also known as titanium(IV) selenide, is an inorganic compound of titanium and selenium. In this material selenium is viewed as selenide (Se2−) which requires that titanium exists as Ti4+. Titanium diselenide is a member of metal dichalcogenides, compounds that consist of a metal and an element of the chalcogen column within the periodic table. Many exhibit properties of potential value in battery technology, such as intercalation and electrical conductivity, although most applications focus on the less toxic and lighter disulfides, e.g. TiS2.

<span class="mw-page-title-main">Molybdenum diselenide</span> Chemical compound

Molybdenum diselenide is an inorganic compound of molybdenum and selenium. Its structure is similar to that of MoS
. Compounds of this category are known as transition metal dichalcogenides, abbreviated TMDCs. These compounds, as the name suggests, are made up of a transition metals and elements of group 16 on the periodic table of the elements. Compared to MoS
, MoSe
exhibits higher electrical conductivity.

<span class="mw-page-title-main">Tungsten diselenide</span> Chemical compound

Tungsten diselenide is an inorganic compound with the formula WSe2. The compound adopts a hexagonal crystalline structure similar to molybdenum disulfide. The tungsten atoms are covalently bonded to six selenium ligands in a trigonal prismatic coordination sphere while each selenium is bonded to three tungsten atoms in a pyramidal geometry. The tungsten–selenium bond has a length of 0.2526 nm, and the distance between selenium atoms is 0.334 nm. It is a well studied example of a layered material. The layers stack together via van der Waals interactions. WSe2 is a very stable semiconductor in the group-VI transition metal dichalcogenides.

Platinum diselenide is a transition metal dichalcogenide with the formula PtSe2. It is a layered substance that can be split into layers down to three atoms thick. PtSe2 can behave as a metalloid or as a semiconductor depending on the thickness.

<span class="mw-page-title-main">Niobium diselenide</span> Chemical compound

Niobium diselenide or niobium(IV) selenide is a layered transition metal dichalcogenide with formula NbSe2. Niobium diselenide is a lubricant, and a superconductor at temperatures below 7.2 K that exhibit a charge density wave (CDW). NbSe2 crystallizes in several related forms, and can be mechanically exfoliated into monatomic layers, similar to other transition metal dichalcogenide monolayers. Monolayer NbSe2 exhibits very different properties from the bulk material, such as of Ising superconductivity, quantum metallic state, and strong enhancement of the CDW.

<span class="mw-page-title-main">Rhenium diselenide</span> Chemical compound

Rhenium diselenide is an inorganic compound with the formula ReSe2. It has a layered structure where atoms are strongly bonded within each layer. The layers are held together by weak Van der Waals bonds, and can be easily peeled off from the bulk material.

<span class="mw-page-title-main">Selenosulfide</span>

In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.

Germanium diselenide is an inorganic compound, with the chemical formula of GeSe2.


  1. Macintyre, J.E. (1992). Dictionary of Inorganic Compounds. Taylor & Francis. p. 293. ISBN   9780412301209.
  2. "化學命名原則" (PDF). 國立編譯館. 2011-04-01. Archived (PDF) from the original on 2016-03-22. Retrieved 2016-02-27.
  3. Shaw, B.L.; Stavely, L.A.K. (2013). Inorganic Hydrides: The Commonwealth and International Library: Chemistry Division. Elsevier Science. p. 76. ISBN   9781483160320.