Carbon diselenide

Last updated
Carbon diselenide
Carbon diselenide.png
Carbon-diselenide-3D-balls.png
Carbon-diselenide-3D-vdW.png
Names
IUPAC name
Carbon diselenide
Systematic IUPAC name
Methanediselenone
Other names
Carbon selenide
Diselenoxomethane
Methanediselone
Carbon(IV) selenide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.323 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-054-9
PubChem CID
UNII
  • InChI=1S/CSe2/c2-1-3 Yes check.svgY
    Key: JNZSJDBNBJWXMZ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/CSe2/c2-1-3
    Key: JNZSJDBNBJWXMZ-UHFFFAOYAM
  • [Se]=C=[Se]
Properties
CSe2
Molar mass 169.953 g·mol−1
AppearanceYellow liquid
Density 2.6824 g/cm3
Melting point −43.7 °C (−46.7 °F; 229.5 K)
Boiling point 125.5 °C (257.9 °F; 398.6 K)
0.054 g/(100 mL)
Solubility Soluble in CS2, toluene
0 D
Thermochemistry
50.32 J/(mol·K) (gas)
Std molar
entropy
(S298)
263.2 J/(mol·K) (gas)
219.2 kJ/mol (liquid)
Hazards
Flash point 30 °C (86 °F; 303 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Carbon diselenide is an inorganic compound with the chemical formula CSe2. It is a yellow-orange oily liquid with pungent odor. It is the selenium analogue of carbon disulfide (CS2) and carbon dioxide (CO2). This light-sensitive compound is insoluble in water and soluble in organic solvents.

Contents

Synthesis, structure and reactions

Carbon diselenide is a linear molecule with D∞h symmetry. It is produced by reacting selenium powder with dichloromethane vapor near 550 °C. [1]

2 Se + CH2Cl2 → CSe2 + 2 HCl

It was first reported by Grimm and Metzger, who prepared it by treating hydrogen selenide with carbon tetrachloride in a hot tube. [2]

Like carbon disulfide, carbon diselenide polymerizes under high pressure. The structure of the polymer is thought to be a head-to-head structure with a backbone in the form of [−C(=Se)−Se−]n. [3] The polymer is a semiconductor with a room-temperature conductivity of 50 S/cm.

In addition, carbon diselenide is a precursor to tetraselenafulvalenes, [4] the selenium analogue of tetrathiafulvalene, which can be further used to synthesize organic conductors and organic superconductors.

Carbon diselenide reacts with secondary amines to give dialkydiselenocarbamates: [1]

2 (CH3CH2)2NH + CSe2[(CH3CH2)2NH+2]((CH3CH2)2N−CSe2)

Safety

Carbon diselenide has high vapor pressure. It has a moderate toxicity and presents an inhalation hazard. It may be dangerous due to its easy membrane transport. It decomposes slowly in storage (about 1% per month at –30 °C). When obtained commercially, its cost is high. [5]

Pure distilled carbon diselenide has an odor very similar to that of carbon disulfide, but mixed with air, it creates extremely offensive odors (corresponding to new, highly toxic reaction products). [6] [7] Its smell forced an evacuation of a nearby village when it was first synthesized in 1936. [7] Because of the odor, synthetic pathways have been developed to avoid its use. [8]

Related Research Articles

<span class="mw-page-title-main">Selenium</span> Chemical element, symbol Se and atomic number 34

Selenium is a chemical element; it has the symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, and also has similarities to arsenic. It seldom occurs in its elemental state or as pure ore compounds in Earth's crust. Selenium was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

<span class="mw-page-title-main">Carbon disulfide</span> Neurotoxic compound with formula S=C=S

Carbon disulfide is an inorganic compound with the chemical formula CS2 and structure S=C=S. It is a colorless, flammable, neurotoxic liquid that is used as a building block in organic synthesis. Pure carbon disulfide has a pleasant, ether- or chloroform-like odor, but commercial samples are usually yellowish and are typically contaminated with foul-smelling impurities.

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

A selenide is a chemical compound containing a selenium with oxidation number of −2. Similar to sulfide, selenides occur both as inorganic compounds and as organic derivatives, which are called organoselenium compound.

<span class="mw-page-title-main">Polysulfide</span>

Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula S2−
n
. These anions are the conjugate bases of polysulfanes H2Sn. Organic polysulfides generally have the formulae R1SnR2, where R = alkyl or aryl.

A non-carbon nanotube is a cylindrical molecule often composed of metal oxides, or group III-Nitrides and morphologically similar to a carbon nanotube. Non-carbon nanotubes have been observed to occur naturally in some mineral deposits.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

Organoselenium chemistry is the science exploring the properties and reactivity of organoselenium compounds, chemical compounds containing carbon-to-selenium chemical bonds. Selenium belongs with oxygen and sulfur to the group 16 elements or chalcogens, and similarities in chemistry are to be expected. Organoselenium compounds are found at trace levels in ambient waters, soils and sediments.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the chemical formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

In polymer chemistry, an inorganic polymer is a polymer with a skeletal structure that does not include carbon atoms in the backbone. Polymers containing inorganic and organic components are sometimes called hybrid polymers, and most so-called inorganic polymers are hybrid polymers. One of the best known examples is polydimethylsiloxane, otherwise known commonly as silicone rubber. Inorganic polymers offer some properties not found in organic materials including low-temperature flexibility, electrical conductivity, and nonflammability. The term inorganic polymer refers generally to one-dimensional polymers, rather than to heavily crosslinked materials such as silicate minerals. Inorganic polymers with tunable or responsive properties are sometimes called smart inorganic polymers. A special class of inorganic polymers are geopolymers, which may be anthropogenic or naturally occurring.

<span class="mw-page-title-main">Carbon subsulfide</span> Organic compound with the structure S=C=C=C=S

Carbon subsulfide is an organic, sulfur-containing chemical compound with the formula C3S2 and structure S=C=C=C=S. This deep red liquid is immiscible with water but soluble in organic solvents. It readily polymerizes at room temperature to form a hard black solid.

Diselenide may refer to:

<span class="mw-page-title-main">Selenourea</span> Chemical compound

Selenourea is the organoselenium compound with the chemical formula Se=C(NH2)2. It is a white solid. This compound features a rare example of a stable, unhindered carbon-selenium double bond. The compound is used in the synthesis of selenium heterocycles. Selenourea is a selenium analog of urea O=C(NH2)2. Few studies have been done on the compound due to the instability and toxicity of selenium compounds. Selenourea is toxic if inhaled or consumed.

<span class="mw-page-title-main">Titanium diselenide</span> Chemical compound

Titanium diselenide (TiSe2) also known as titanium(IV) selenide, is an inorganic compound of titanium and selenium. In this material selenium is viewed as selenide (Se2−) which requires that titanium exists as Ti4+. Titanium diselenide is a member of metal dichalcogenides, compounds that consist of a metal and an element of the chalcogen column within the periodic table. Many exhibit properties of potential value in battery technology, such as intercalation and electrical conductivity, although most applications focus on the less toxic and lighter disulfides, e.g. TiS2.

<span class="mw-page-title-main">Molybdenum diselenide</span> Chemical compound

Molybdenum diselenide is an inorganic compound of molybdenum and selenium. Its structure is similar to that of MoS
2
. Compounds of this category are known as transition metal dichalcogenides, abbreviated TMDCs. These compounds, as the name suggests, are made up of a transition metals and elements of group 16 on the periodic table of the elements. Compared to MoS
2
, MoSe
2
exhibits higher electrical conductivity.

Phosphorus selenides are a relatively obscure group of compounds. There have been some studies of the phosphorus - selenium phase diagram and the glassy amorphous phases are reported. The compounds that have been reported are shown below. While some of phosphorus selenides are similar to their sulfide analogues, there are some new forms, molecular P2Se5 and the polymeric catena-[P4Se4]x. There is also some doubt about the existence of molecular P4Se10.

<span class="mw-page-title-main">Selenosulfide</span>

In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.

Carbon dichalcogenides are chemical compounds of carbon and chalcogen elements. They have the general chemical formula CZ2, where Z = O, S, Se, Te.

References

  1. 1 2 Pan, W.-H.; Fackler, J. P. Jr.; Anderson, D. M.; Henderson, S. G. D.; Stephenson, T. A. (1982). "2. Diselenocarbamates from Carbon Diselenide". In Fackler, J. P. Jr. (ed.). Inorganic Syntheses. Vol. 21. pp. 6–11. doi:10.1002/9780470132524.ch2. ISBN   978-0-470-13252-4.
  2. Grimm, H. G.; Metzger, H. (1936). "Über Darstellung und Eigenschaften des Selenkohlenstoffs". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 69 (6): 1356–1364. doi:10.1002/cber.19360690626.
  3. Carraher, C. E. Jr.; Pittman, C. U. Jr. (2005). "Poly(Carbon Disulfide), Poly(Carbon Diselenide), and Polythiocyanogen". Inorganic Polymers. 21. doi:10.1002/14356007.a14_241. ISBN   3-527-30673-0.
  4. Engler, E. M.; Patel, V. V. (1974). "Structure control in organic metals. Synthesis of tetraselenofulvalene and its charge transfer salt with tetracyano-p-quinodimethane". Journal of the American Chemical Society. 96 (23): 7376–7378. doi:10.1021/ja00810a042. PMID   4814748.
  5. "Carbon Diselenide CSe2". Cse2.com. Retrieved 2012-04-04.
  6. Wolfgang H. H. Gunther. Organic Selenium Compounds: Their Chemistry and Biology. carbon diselenide has by far the worst odor this author has experienced in his lifetime of working with selenium compounds
  7. 1 2 Lowe, Derek (2005-03-03). "Things I Won't Work With: Carbon Diselenide". In the Pipeline. Science. Archived from the original on 23 September 2015. Retrieved 20 November 2015.
  8. USpatent 4462938,Wudl, F.,"Process for producing chalcogen containing compounds",issued 1984-07-31, assigned to AT&T Bell Laboratories.