Organic superconductor

Last updated

An organic superconductor is a synthetic organic compound that exhibits superconductivity at low temperatures.

Contents

As of 2007 the highest achieved critical temperature for an organic superconductor at standard pressure is 33 K (−240 °C; −400 °F), observed in the alkali-doped fullerene RbCs2C60. [1] [2]

In 1979 Klaus Bechgaard synthesized the first organic superconductor (TMTSF)2PF6 (the corresponding material class was named after him later) with a transition temperature of TC = 0.9 K, at an external pressure of 12 kbar. [3]

Many materials may be characterized as organic superconductors. These include the Bechgaard salts and Fabre salts which are both quasi-one-dimensional, and quasi-two-dimensional materials such as k-BEDT-TTF2X charge-transfer complex, λ-BETS2X compounds, graphite intercalation compounds and three-dimensional materials such as the alkali-doped fullerenes.

Organic superconductors are of special interest not only for scientists, looking for room-temperature superconductivity and for model systems explaining the origin of superconductivity but also for daily life issues as organic compounds are mainly built of carbon and hydrogen which belong to the most common elements on earth in contrast to copper or osmium.

One-dimensional Fabre and Bechgaard salts

Fabre-salts are composed of tetramethyltetrathiafulvalene (TMTTF) and Bechgaard salts of tetramethyltetraselenafulvalene (TMTSF). These two organic molecules are similar except for the sulfur-atoms of TMTTF being replaced by selenium-atoms in TMTSF. The molecules are stacked in columns (with a tendency to dimerization) which are separated by anions. Typical anions are, for example, octahedral PF6, AsF6 or tetrahedral ClO4 or ReO4.

Both material classes are quasi-one-dimensional at room-temperature, only conducting along the molecule stacks, and share a very rich phase diagram containing antiferromagnetic ordering, charge order, spin-density wave state, dimensional crossover and superconductivity.

Only one Bechgaard salt was found to be superconducting at ambient pressure which is (TMTTF)2ClO4 with a transition temperature of TC = 1.4 K. Several other salts become superconducting only under external pressure. The external pressure required to drive most Fabre-salts to superconductivity is so high, that under lab conditions superconductivity was observed only in one compound. A selection of the transition temperature and corresponding external pressure of several one-dimensional organic superconductors is shown in the table below.

MaterialTC (K)pext (kbar)
(TMTSF)2SbF60.3610.5
(TMTSF)2PF61.16.5
(TMTSF)2AsF61.19.5
(TMTSF)2ReO41.29.5
(TMTSF)2TaF61.3511
(TMTTF)2Br0.826

Two-dimensional (BEDT-TTF)2X

The layered structure of ET2X salts illustrated by k-(ET)2Cu2(CN)3. The yellow, grey, blue and red ellipsoids represent the sulfur, carbon, nitrogen and copper atoms, respectively. The hydrogen atoms are omitted for clarity. Layers of ET donor molecules are separated by polymeric Cu2(CN)3 anion sheets. k-(ET)2Cu2(CN)3 is a semiconductor, but a very similar k'-(ET)2Cu2(CN)3 polymorph is an ambient-pressure superconductor with TC ~ 5 K. K-(BEDT-TTF)2Cu2(CN)3 structure.png
The layered structure of ET2X salts illustrated by κ-(ET)2Cu2(CN)3. The yellow, grey, blue and red ellipsoids represent the sulfur, carbon, nitrogen and copper atoms, respectively. The hydrogen atoms are omitted for clarity. Layers of ET donor molecules are separated by polymeric Cu2(CN)3 anion sheets. κ-(ET)2Cu2(CN)3 is a semiconductor, but a very similar κ'-(ET)2Cu2(CN)3 polymorph is an ambient-pressure superconductor with TC ~ 5 K.

BEDT-TTF is the short form of bisethylenedithio-tetrathiafulvalene commonly abbreviated with ET. These molecules form planes which are separated by anions. The pattern of the molecules in the planes is not unique but there are several different phases growing, depending on the anion and the growth conditions. Important phases concerning superconductivity are the α- and θ- phase with the molecules ordering in a fishbone structure and the β- and especially κ-phase which order in a checkerboard structure with molecules being dimerized in the κ-phase. This dimerization makes the κ-phases special as they are not quarter- but half-filled systems, driving them into superconductivity at higher temperatures compared to the other phases.

The amount of possible anions separating two sheets of ET-molecules is nearly infinite. There are simple anions such as triiodide (I
3
), polymeric ones such as the very famous Cu[N(CN)2]Br and anions containing solvents for example Ag(CF3)4·112DCBE. The electronic properties of the ET-based crystals are determined by its growing phase, its anion and by the external pressure applied. The external pressure needed to drive an ET-salt with insulating ground state to a superconducting one is much less than those needed for Bechgaard salts. For example, κ-(ET)2Cu[N(CN)2]Cl needs only a pressure of about 300 bar to become superconducting, which can be achieved by placing a crystal in grease frozen below 0 °C (32 °F) and then providing sufficient stress to induce the superconducting transition. The crystals are very sensitive, which can be observed impressively in α-(ET)2I3 lying several hours in the sun (or more controlled in an oven at 40 °C, 104 °F). After this treatment one gets αTempered-(ET)2I3 which is superconducting.

In contrast to the Fabre or Bechgaard salts universal phase diagrams for all the ET-based salts have only been proposed yet. Such a phase diagram would depend not only on temperature and pressure (i.e. bandwidth), but also on electronic correlations. In addition to the superconducting ground state these materials show charge-order, antiferromagnetism or remain metallic down to lowest temperatures. One compound is even predicted to be a spin liquid.

The highest transition temperatures at ambient pressure and with external pressure are both found in κ-phases with very similar anions. κ-(ET)2Cu[N(CN)2]Br becomes superconducting at TC = 11.8 K at ambient pressure, and a pressure of 300 bar drives deuterated κ-(ET)2Cu[N(CN)2]Cl from an antiferromagnetic to a superconducting ground state with a transition temperature of TC = 13.1 K. The following table shows only a few exemplary superconductors of this class. For more superconductors, see Lebed (2008) in the references.

MaterialTC (K)pext (kbar)
βH-(ET)2I31.50
θ-(ET)2I33.60
k-(ET)2I33.60
α-(ET)2KHg(SCN)40.30
α-(ET)2KHg(SCN)41.21.2
β’’-(ET)2SF5CH2CF2SO35.30
κ-(ET)2Cu[N(CN)2]Cl12.80.3
κ-(ET)2Cu[N(CN)2]Cl deuterated13.10.3
κ-(ET)2Cu[N(CN)2]Br deuterated11.20
κ-(ET)2Cu(NCS)210.40
κ-(ET)4Hg2.89Cl81.812
κH-(ET)2Cu(CF3)4·TCE9.20
κH-(ET)2Ag(CF3)4·TCE11.10

Even more superconductors can be found by changing the ET-molecules slightly either by replacing the sulfur atoms by selenium (BEDT-TSF, BETS) or by oxygen (BEDO-TTF, BEDO).

Some two-dimensional organic superconductors of the κ-(ET)2X and λ(BETS)2X families are candidates for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase when superconductivity is suppressed by an external magnetic field. [5]

Doped fullerenes

Structure of Cs3C60 Fulleride Cs3C60.jpg
Structure of Cs3C60

Superconducting fullerenes based on C60 are fairly different from other organic superconductors. The building molecules are no longer manipulated hydrocarbons but pure carbon molecules. In addition these molecules are no longer flat but bulky which gives rise to a three-dimensional, isotropic superconductor. The pure C60 grows in an fcc-lattice and is an insulator. By placing alkali atoms in the interstitials the crystal becomes metallic and eventually superconducting at low temperatures.

Unfortunately C60 crystals are not stable at ambient atmosphere. They are grown and investigated in closed capsules, limiting the measurement techniques possible. The highest transition temperature measured so far was TC = 33 K for Cs2RbC60.The highest measured transition temperature of an organic superconductor was found in 1995 in Cs3C60 pressurized with 15 kbar to be TC = 40 K. Under pressure this compound shows a unique behavior. Usually the highest TC is achieved with the lowest pressure necessary to drive the transition. Further increase of the pressure usually reduces the transition temperature. However, in Cs3C60 superconductivity sets in at very low pressures of several 100 bar, and the transition temperature keeps increasing with increasing pressure. This indicates a completely different mechanism than just broadening of the bandwidth.

MaterialTC (K)pext (mbar)
K3C60180
Rb3C6030.70
K2CsC60240
K2RbC6021.50
K5C608.40
Sr6C606.80
(NH3)4Na2CsC6029.60
(NH3)K3C602814.8

More organic superconductors

Next to the three major classes of organic superconductors (SCs) there are more organic systems becoming superconducting at low temperatures or under pressure. A few examples follow.

TTP-based SCs

TMTTF as well as BEDT-TTF are based on the molecule TTF (tetrathiafulvalene). Using tetrathiapentalene (TTP) as basic molecules one receives a variety of new organic molecules serving as cations in organic crystals. Some of them are superconducting. This class of superconductors was only reported recently and investigations are still under process.

Phenanthrene-type SCs

Instead of using sulfated molecules or the fairly big Buckminster fullerenes recently it became possible to synthesize crystals from the hydrocarbon picene and phenanthrene. Doping the crystal picene and phenanthrene with alkali metals such as potassium or rubidium and annealing for several days leads to superconductivity with transition temperatures up to 18 K (−255 °C; −427 °F). For AxPhenanthrene, the superconductivity is possible unconventional. Both phenanthrene and picene are called phenanthrene-edge-type polycyclic aromatic hydrocarbon. The increasing number of benzene rings results in higher Tc.

Graphite intercalation SCs

Crystal structure of KC8 Potassium-graphite-xtal-3D-SF-B.png
Crystal structure of KC8

Putting foreign molecules or atoms between hexagon graphite sheets leads to ordered structures and to superconductivity even if neither the foreign molecule or atom nor the graphite layers are metallic. Several stoichiometries have been synthesized using mainly alkali atoms as anions.

Several TCs for unusual SCs

MaterialTC (K)
(BDA-TTP)2AsF65.8
(DTEDT)3Au(CN)24
K3.3Picene18
Rb3.1Picene6.9
K3Phenanthrene4.95
Rb3Phenanthrene4.75
CaC511.5
NaC25
KC80.14

Related Research Articles

<span class="mw-page-title-main">Carbide</span> Inorganic compound group

In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece.

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbon

A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- and ellipsoid-like forms, tubes, or other shapes.

<span class="mw-page-title-main">State of matter</span> Forms, such as solid, liquid and gas, which matter can take

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma.

Unconventional superconductors are materials that display superconductivity which is not explained by the usual BCS theory or its extension, the Eliashberg theory. The pairing in unconventional superconductors may originate from some other mechanism than the electron–phonon interaction. Alternatively, a superconductor is unconventional if the superconducting order parameter transforms according to a non-trivial irreducible representation of the point group or space group of the system. Per definition, superconductors that break additional symmetries to U (1) symmetry are known as unconventional superconductors.

<span class="mw-page-title-main">Buckminsterfullerene</span> Cage-like allotrope of carbon

Buckminsterfullerene is a type of fullerene with the formula C60. It has a cage-like fused-ring structure (truncated icosahedron) made of twenty hexagons and twelve pentagons, and resembles a soccer ball. Each of its 60 carbon atoms is bonded to its three neighbors.

<span class="mw-page-title-main">High-temperature superconductivity</span> Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductivity is superconductivity in materials with a critical temperature above 77 K, the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient, and therefore require cooling. The first breakthrough of high-temperature superconductor was discovered in 1986 by IBM researchers Georg Bednorz and K. Alex Müller. Although the critical temperature is around 35.1 K, this new type of superconductor was readily modified by Ching-Wu Chu to make the first high-temperature superconductor with critical temperature 93 K. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-Tc materials are type-II superconductors.

<span class="mw-page-title-main">Charge-transfer complex</span> Association of molecules in which a fraction of electronic charge is transferred between them

In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred to respectively as the electron acceptor and electron donor. In some cases, the degree of charge transfer is "complete", such that the CT complex can be classified as a salt. In other cases, the charge-transfer association is weak, and the interaction can be disrupted easily by polar solvents.

<span class="mw-page-title-main">Cryptand</span> Cyclic, multidentate ligands adept at encapsulating cations

In chemistry, cryptands are a family of synthetic, bicyclic and polycyclic, multidentate ligands for a variety of cations. The Nobel Prize for Chemistry in 1987 was given to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen for their efforts in discovering and determining uses of cryptands and crown ethers, thus launching the now flourishing field of supramolecular chemistry. The term cryptand implies that this ligand binds substrates in a crypt, interring the guest as in a burial. These molecules are three-dimensional analogues of crown ethers but are more selective and strong as complexes for the guest ions. The resulting complexes are lipophilic.

<span class="mw-page-title-main">History of superconductivity</span>

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

<span class="mw-page-title-main">Endohedral fullerene</span> Fullerene molecule with additional atoms, ions, or clusters enclosed within itself

Endohedral fullerenes, also called endofullerenes, are fullerenes that have additional atoms, ions, or clusters enclosed within their inner spheres. The first lanthanum C60 complex called La@C60 was synthesized in 1985. The @ (at sign) in the name reflects the notion of a small molecule trapped inside a shell. Two types of endohedral complexes exist: endohedral metallofullerenes and non-metal doped fullerenes.

<span class="mw-page-title-main">Bechgaard salt</span> Class of organic compounds that are superconductive at low temperatures

In organic chemistry, a Bechgaard salt is any one of a number of organic charge-transfer complexes that exhibit superconductivity at low temperatures. They are named for chemist Klaus Bechgaard, who was one of the first scientists to synthesize them and demonstrate their superconductivity with the help of physicist Denis Jérome. Most Bechgaard salt superconductors are extremely low temperature, and lose superconductivity above the 1–2 K range, although the most successful compound in this class superconducts up to almost 12 K.

<span class="mw-page-title-main">Tetrathiafulvalene</span> Organosulfuric compound with formula C6H4S4

Tetrathiafulvalene (TTF) is an organosulfur compound with the formula 2. Studies on this heterocyclic compound contributed to the development of molecular electronics. TTF is related to the hydrocarbon fulvalene, (C5H4)2, by replacement of four CH groups with sulfur atoms. Over 10,000 scientific publications discuss TTF and its derivatives.

Klaus Bechgaard was a Danish scientist and chemist, noted for being one of the first scientists in the world to synthesize a number of organic charge transfer complexes and demonstrate their superconductivity, therefore the name Bechgaard salt. These salts all exhibit superconductivity at low temperatures.

Charge ordering (CO) is a phase transition occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. Due to the strong interaction between electrons, charges are localized on different sites leading to a disproportionation and an ordered superlattice. It appears in different patterns ranging from vertical to horizontal stripes to a checkerboard–like pattern , and it is not limited to the two-dimensional case. The charge order transition is accompanied by symmetry breaking and may lead to ferroelectricity. It is often found in close proximity to superconductivity and colossal magnetoresistance.

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase can arise in a superconductor under large magnetic fields. Among its characteristics are Cooper pairs with nonzero total momentum and a spatially non-uniform order parameter, leading to normally conducting areas in the system.

C<sub>70</sub> fullerene Chemical compound

C70 fullerene is the fullerene molecule consisting of 70 carbon atoms. It is a cage-like fused-ring structure which resembles a rugby ball, made of 25 hexagons and 12 pentagons, with a carbon atom at the vertices of each polygon and a bond along each polygon edge. A related fullerene molecule, named buckminsterfullerene (or C60 fullerene) consists of 60 carbon atoms.

<span class="mw-page-title-main">Carbon peapod</span> Hybrid nanomaterial

Carbon peapod is a hybrid nanomaterial consisting of spheroidal fullerenes encapsulated within a carbon nanotube. It is named due to their resemblance to the seedpod of the pea plant. Since the properties of carbon peapods differ from those of nanotubes and fullerenes, the carbon peapod can be recognized as a new type of a self-assembled graphitic structure. Possible applications of nano-peapods include nanoscale lasers, single electron transistors, spin-qubit arrays for quantum computing, nanopipettes, and data storage devices thanks to the memory effects and superconductivity of nano-peapods.

<span class="mw-page-title-main">Dicyanamide</span>

Dicyanamide, also known as dicyanamine, is an anion having the formula C
2
N
3
. It contains two cyanide groups bound to a central nitrogen anion. The chemical is formed by decomposition of 2-cyanoguanidine. It is used extensively as a counterion of organic and inorganic salts, and also as a reactant for the synthesis of various covalent organic structures.

<span class="mw-page-title-main">Fulleride</span> Chemical compound

Fullerides are chemical compounds containing fullerene anions. Common fullerides are derivatives of the most common fullerenes, i.e. C60 and C70. The scope of the area is large because multiple charges are possible, i.e., [C60]n (n = 1, 2...6), and all fullerenes can be converted to fullerides. The suffix "-ide" implies their negatively charged nature.

References

  1. Lebed, A. G. (Ed.) (2008). The Physics of Organic Superconductors and Conductors. Springer Series in Materials Science, Vol. 110. ISBN   978-3-540-76667-4
  2. Singleton, John; Mielke, Charles (2002). "Quasi-two-dimensional organic superconductors: A review". Contemporary Physics. 43 (2): 63. arXiv: cond-mat/0202442 . Bibcode:2002ConPh..43...63S. doi:10.1080/00107510110108681. S2CID   15343631.
  3. Jérome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. (1980). "Superconductivity in a synthetic organic conductor (TMTSF)2PF 6". Journal de Physique Lettres. 41 (4): 95–98. doi:10.1051/jphyslet:0198000410409500.
  4. Komatsu, Tokutaro; Matsukawa, Nozomu; Inoue, Takeharu; Saito, Gunzi (1996). "Realization of Superconductivity at Ambient Pressure by Band-Filling Control in κ-(BEDT-TTF)2 Cu2(CN)3". Journal of the Physical Society of Japan. 65 (5): 1340–1354. doi:10.1143/JPSJ.65.1340.
  5. Shimahara, H. (2008) "Theory of the Fulde-Ferrell-Larkin-Ovchinnikov State and Application to Quasi-Low-Dimensional Organic Superconductors", in The Physics of Organic Superconductors and Conductors. A. G. Lebed (ed.). Springer, Berlin.