Flux pumping

Last updated

Flux pumping is a method for magnetising superconductors to fields in excess of 15 teslas.[ citation needed ] The method can be applied to any type II superconductor and exploits a fundamental property of superconductors, namely their ability to support and maintain currents on the length scale of the superconductor. Conventional magnetic materials are magnetised on a molecular scale which means that superconductors can maintain a flux density orders of magnitude bigger than conventional materials. Flux pumping is especially significant when one bears in mind that all other methods of magnetising superconductors require application of a magnetic flux density at least as high as the final required field. This is not true of flux pumping.

Contents

An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source. In a normal conductor, an electric current may be visualized as a fluid of electrons moving across a heavy ionic lattice. The electrons are constantly colliding with the ions in the lattice, and during each collision some of the energy carried by the current is absorbed by the lattice and converted into heat, which is essentially the vibrational kinetic energy of the lattice ions. As a result, the energy carried by the current is constantly being dissipated. This is the phenomenon of electrical resistance.

The situation is different in a superconductor. In a conventional superconductor, the electronic fluid cannot be resolved into individual electrons. Instead, it consists of bound pairs of electrons known as Cooper pairs. This pairing is caused by an attractive force between electrons from the exchange of phonons. Due to quantum mechanics, the energy spectrum of this Cooper pair fluid possesses an energy gap , meaning there is a minimum amount of energy ΔE that must be supplied in order to excite the fluid. Therefore, if ΔE is larger than the thermal energy of the lattice, given by kT, where k is the Boltzmann constant and T is the temperature, the fluid will not be scattered by the lattice. The Cooper pair fluid is thus a superfluid, meaning it can flow without energy dissipation.

In a class of superconductors known as type II superconductors, including all known high-temperature superconductors, an extremely small amount of resistivity appears at temperatures not too far below the nominal superconducting transition when an electric current is applied in conjunction with a strong magnetic field, which may be caused by the electric current. This is due to the motion of vortices in the electronic superfluid, which dissipates some of the energy carried by the current. If the current is sufficiently small, then the vortices are stationary, and the resistivity vanishes. The resistance due to this effect is tiny compared with that of non-superconducting materials, but must be taken into account in sensitive experiments.

Introduction

In the method described here a magnetic field is swept across the superconductor in a magnetic wave. This field induces current according to Faraday's law of induction. As long as the direction of motion of the magnetic wave is constant then the current induced will always be in the same sense and successive waves will induce more and more current.

Traditionally the magnetic wave would be generated either by physically moving a magnet or by an arrangement of coils switched in sequence, such as occurs on the stator of a three-phase motor. Flux Pumping is a solid state method where a material which changes magnetic state at a suitable magnetic ordering temperature is heated at its edge and the resultant thermal wave produces a magnetic wave which then magnetizes the superconductor. A superconducting flux pump should not be confused with a classical flux pump as described in Van Klundert et al.’s [1] review.

The method described here has two unique features:

The system, as described, is actually a novel kind of heat engine in which thermal energy is being converted into magnetic energy.

Background

Meissner effect

Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet. This current effectively forms an electromagnet that repels the magnet. Meissner effect p1390048.jpg
Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet. This current effectively forms an electromagnet that repels the magnet.

When a superconductor is placed in a weak external magnetic field H, the field penetrates the superconductor only a small distance λ, called the London penetration depth, decaying exponentially to zero within the interior of the material. This is called the Meissner effect, and is a defining characteristic of superconductivity. For most superconductors, the London penetration depth is on the order of 100 nm.

The Meissner effect is sometimes confused with the kind of diamagnetism one would expect in a perfect electrical conductor: according to Lenz's law, when a changing magnetic field is applied to a conductor, it will induce an electric current in the conductor that creates an opposing magnetic field. In a perfect conductor, an arbitrarily large current can be induced, and the resulting magnetic field exactly cancels the applied field.

The Meissner effect is distinct from this because a superconductor expels all magnetic fields, not just those that are changing. Suppose we have a material in its normal state, containing a constant internal magnetic field. When the material is cooled below the critical temperature, we would observe the abrupt expulsion of the internal magnetic field, which we would not expect based on Lenz's law.

The Meissner effect was explained by the brothers Fritz and Heinz London, who showed that the electromagnetic free energy in a superconductor is minimized provided

where H is the magnetic field and λ is the London penetration depth.

This equation, which is known as the London equation, predicts that the magnetic field in a superconductor decays exponentially from whatever value it possesses at the surface.

In 1962, the first commercial superconducting wire, a niobium-titanium alloy, was developed by researchers at Westinghouse, allowing the construction of the first practical superconducting magnets. In the same year, Josephson made the important theoretical prediction that a supercurrent can flow between two pieces of superconductor separated by a thin layer of insulator. [2] This phenomenon, now called the Josephson effect, is exploited by superconducting devices such as SQUIDs. It is used in the most accurate available measurements of the magnetic flux quantum , and thus (coupled with the quantum Hall resistivity) for the Planck constant h. Josephson was awarded the Nobel Prize for this work in 1973.

E–J power law

The most popular model used to describe superconductivity include Bean's critical state model and variations such as the Kim–Anderson model. However, the Bean model assumes zero resistivity and that current is always induced at the critical current. A more useful model for engineering applications is the so-called E–J power law, in which the field and the current are linked by the following equations:

E J Power Law.JPG

In these equations, if n = 1 then the conductor has linear resistivity such as is found in copper. The higher the n-value the closer we get to the critical state model. Also the higher the n-value then the "better" the superconductor as the lower the resistivity at a certain current. The E–J power law can be used to describe the phenomenon of flux-creep in which a superconductor gradually loses its magnetisation over time. This process is logarithmic and thus gets slower and slower and ultimately leads to very stable fields.

Theory

The potential of superconducting coils and bulk melt-processed YBCO single domains to maintain significant magnetic fields at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors. It has already been shown that large fields can be obtained in single domain bulk samples at 77 K. A range of possible applications exist in the design of high power density electric motors.

Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is the induction of the magnetic fields, this applies both to bulk and to coils operating in persistent mode. There are four possible known methods:

  1. Cooling in field;
  2. Zero field cooling, followed by slowly applied field;
  3. Pulse magnetization;
  4. Flux pumping;

Any of these methods could be used to magnetise the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetised in situ.

There are several reasons for this: first, if the superconductors should become demagnetised through (i) flux creep, (ii) repeatedly applied perpendicular fields or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine. Secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine. Thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the most efficient design of machine will therefore be one in which an in situ magnetizing fixture is included.

The first three methods all require a solenoid which can be switched on and off. In the first method an applied magnetic field is required equal to the required magnetic field, whilst the second and third approaches require fields at least two times greater. The final method, however, offers significant advantages since it achieves the final required field by repeated applications of a small field and can utilise a permanent magnet.

If we wish to pulse a field using, say, a 10 T magnet to magnetize a 30 mm × 10 mm sample then we can work out how big the solenoid needs to be. If it were possible to wind an appropriate coil using YBCO tape then, assuming an Ic of 70 A and a thickness of 100 μm, we would have 100 turns and 7 000 A turns. This would produce a B field of approximately 7 000/(20 × 10−3) × 4π × 10−7 = 0.4 T. To produce 10 T would require pulsing to 1 400 A! An alternative calculation would be to assume a Jc of say 5 × 108Am−1 and a coil 1 cm2 in cross section. The field would then be 5 × 108 × 10−2 × (2 × 4π × 10−7) = 10 T. Clearly if the magnetisation fixture is not to occupy more room than the puck itself then a very high activation current would be required and either constraint makes in situ magnetization a very difficult proposition. What is required for in situ magnetisation is a magnetisation method in which a relatively small field of the order of milliteslas repeatedly applied is used to magnetize the superconductor.

Applications

Superconducting magnets are some of the most powerful electromagnets known. They are used in MRI and NMR machines, mass spectrometers, Magnetohydrodynamic Power Generation and beam-steering magnets used in particle accelerators. They can also be used for magnetic separation, where weakly magnetic particles are extracted from a background of less or non-magnetic particles, as in the pigment industries.

Other early markets are arising where the relative efficiency, size and weight advantages of devices based on HTS outweigh the additional costs involved.

Promising future applications include high-performance transformers, power storage devices, electric power transmission, electric motors (e.g. for vehicle propulsion, as in vactrains or maglev trains), magnetic levitation devices, and fault current limiters.

Related Research Articles

<span class="mw-page-title-main">Superconductivity</span> Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of direct current in a superconducting coil which has been cryogenically cooled to a temperature below its superconducting critical temperature. This use of superconducting coils to store magnetic energy was invented by M. Ferrier in 1970.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

Technological applications of superconductivity include:

<span class="mw-page-title-main">Magnet</span> Object that has a magnetic field

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

<span class="mw-page-title-main">Meissner effect</span> Expulsion of a magnetic field from a superconductor

The Meissner effect is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. This expulsion will repel a nearby magnet.

<span class="mw-page-title-main">Magnetometer</span> Device that measures magnetism

A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field. Other magnetometers measure the magnetic dipole moment of a magnetic material such as a ferromagnet, for example by recording the effect of this magnetic dipole on the induced current in a coil.

<span class="mw-page-title-main">Electromagnet</span> Magnet created with an electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

<span class="mw-page-title-main">High-temperature superconductivity</span> Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductors are defined as materials with critical temperature above 77 K, the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at even colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient, and therefore require cooling. The first breakthrough of high-temperature superconductor was discovered in 1986 by IBM researchers Georg Bednorz and K. Alex Müller. Although the critical temperature is around 35.1 K, this new type of superconductor was readily modified by Ching-Wu Chu to make the first high-temperature superconductor with critical temperature 93 K. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-Tc materials are type-II superconductors.

<span class="mw-page-title-main">Magnesium diboride</span> Chemical compound

Magnesium diboride is the inorganic compound with the formula MgB2. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K (−234 °C). In terms of its composition, MgB2 differs strikingly from most low-temperature superconductors, which feature mainly transition metals. Its superconducting mechanism is primarily described by BCS theory.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

<span class="mw-page-title-main">Eddy current</span> Loops of electric current induced within conductors by a changing magnetic field

In electromagnetism, an eddy current is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.

<span class="mw-page-title-main">History of superconductivity</span>

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

In electrostatics, a perfect conductor is an idealized model for real conducting materials. The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric field is screened from the interior of the material by rearrangement of the surface charge.

<span class="mw-page-title-main">Niobium–tin</span> Superconducting intermetallic compound

Niobium–tin is an intermetallic compound of niobium (Nb) and tin (Sn), used industrially as a type-II superconductor. This intermetallic compound has a simple structure: A3B. It is more expensive than niobium–titanium (NbTi), but remains superconducting up to a magnetic flux density of 30 teslas [T] (300,000 G), compared to a limit of roughly 15 T for NbTi.

Cryogenic particle detectors operate at very low temperature, typically only a few degrees above absolute zero. These sensors interact with an energetic elementary particle and deliver a signal that can be related to the type of particle and the nature of the interaction. While many types of particle detectors might be operated with improved performance at cryogenic temperatures, this term generally refers to types that take advantage of special effects or properties occurring only at low temperature.

<span class="mw-page-title-main">Type-II superconductor</span> Superconductor characterized by the formation of magnetic vortices in an applied magnetic field

In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the formation of magnetic field vortices with an applied external magnetic field. This occurs above a certain critical field strength Hc1. The vortex density increases with increasing field strength. At a higher critical field Hc2, superconductivity is destroyed. Type-II superconductors do not exhibit a complete Meissner effect.

<span class="mw-page-title-main">Superconducting wire</span> Wires exhibiting zero resistance

Superconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market.

Hydrogen cryomagnetics is a term used to denote the use of cryogenic liquid hydrogen to cool the windings of an electromagnet. A key benefit of hydrogen cryomagnetics is that low temperature liquid hydrogen can be deployed simultaneously both as a cryogen to cool electromagnet windings and as an energy carrier. That is, powerful synergistic benefits are likely to arise when hydrogen is used as a fuel and as a coolant. Even without the fuel/coolant synergies, hydrogen cryomagnetics is an attractive option for the cooling of superconducting electromagnets as it eliminates dependence upon increasingly scarce and expensive liquid helium. For hydrogen cryomagnetic applications specialist hydrogen-cooled electromagnets are wound using either copper or superconductors. Liquid-hydrogen-cooled copper-wound magnets work well as pulsed field magnets. Superconductors have the property that they can operate continuously and very efficiently as electrical resistive losses are almost entirely avoided. Most commonly the term "hydrogen cryomagnetics" is used to denote the use of cryogenic liquid hydrogen directly, or indirectly, to enable high temperature superconductivity in electromagnet windings.

References

  1. L.J.M. van de Klundert; et al. (1981). "On fully conducting rectifiers and fluxpumps. A review. Part 2: Commutation modes, characteristics and switches". Cryogenics: 267–277.
  2. B.D. Josephson (1962). "Possible new effects in superconductive tunnelling". Phys. Lett. 1 (7): 251–253. Bibcode:1962PhL.....1..251J. doi:10.1016/0031-9163(62)91369-0.

Sources