Pigment

Last updated

Pigments for sale at a market stall in Goa, India Indian pigments.jpg
Pigments for sale at a market stall in Goa, India

A pigment is a powder used to add color or change visual appearance. Pigments are completely or nearly insoluble and chemically unreactive in water or another medium; in contrast, dyes are colored substances which are soluble or go into solution at some stage in their use. [1] [2] Dyes are often organic compounds whereas pigments are often inorganic. Pigments of prehistoric and historic value include ochre, charcoal, and lapis lazuli.

Contents

Economic impact

In 2006, around 7.4 million tons of inorganic, organic, and special pigments were marketed worldwide. [3] According to an April 2018 report by Bloomberg Businessweek , the estimated value of the pigment industry globally is $30 billion. The value of titanium dioxide used to enhance the white brightness of many products was placed at $13.2 billion per year, while the color Ferrari red is valued at $300 million each year. [4]

Physical principles

A wide variety of wavelengths (colors) encounter a pigment. This pigment absorbs red and green light, but reflects blue--giving the substance a blue-colored appearance. Simple reflectance.svg
A wide variety of wavelengths (colors) encounter a pigment. This pigment absorbs red and green light, but reflects blue—giving the substance a blue-colored appearance.

Like all materials, the color of pigments arises because they absorb only certain wavelengths of visible light. The bonding properties of the material determine the wavelength and efficiency of light absorption. [5] Light of other wavelengths are reflected or scattered. The reflected light spectrum defines the color that we observe.

The appearance of pigments is sensitive to the source light. Sunlight has a high color temperature and a fairly uniform spectrum. Sunlight is considered a standard for white light. Artificial light sources are less uniform.

Color spaces used to represent colors numerically must specify their light source. Lab color measurements, unless otherwise noted, assume that the measurement was recorded under a D65 light source, or "Daylight 6500 K", which is roughly the color temperature of sunlight.

Sunlight encounters Rosco R80 "Primary Blue" pigment. The product of the source spectrum and the reflectance spectrum of the pigment results in the final spectrum, and the appearance of blue. Complex reflectance.svg
Sunlight encounters Rosco R80 "Primary Blue" pigment. The product of the source spectrum and the reflectance spectrum of the pigment results in the final spectrum, and the appearance of blue.

Other properties of a color, such as its saturation or lightness, may be determined by the other substances that accompany pigments. Binders and fillers can affect the color.

History

Minerals have been used as colorants since prehistoric times. [6] Early humans used paint for aesthetic purposes such as body decoration. Pigments and paint grinding equipment believed to be between 350,000 and 400,000 years old have been reported in a cave at Twin Rivers, near Lusaka, Zambia. Ochre, iron oxide, was the first color of paint. [7] A favored blue pigment was derived from lapis lazuli. Pigments based on minerals and clays often bear the name of the city or region where they were originally mined. Raw sienna and burnt sienna came from Siena, Italy, while raw umber and burnt umber came from Umbria. These pigments were among the easiest to synthesize, and chemists created modern colors based on the originals. These were more consistent than colors mined from the original ore bodies, but the place names remained. Also found in many Paleolithic and Neolithic cave paintings are Red Ochre, anhydrous Fe2O3, and the hydrated Yellow Ochre (Fe2O3.H2O). [8] Charcoal—or carbon black—has also been used as a black pigment since prehistoric times. [8]

The first known synthetic pigment was Egyptian blue, which is first attested on an alabaster bowl in Egypt dated to Naqada III (circa 3250 BC). [9] [10] Egyptian blue (blue frit), calcium copper silicate CaCuSi4O10, made by heating a mixture of quartz sand, lime, a flux and a copper source, such as malachite. [11] Already invented in the Predynastic Period of Egypt, its use became widespread by the 4th Dynasty. [12] It was the blue pigment par excellence of Roman antiquity; its art technological traces vanished in the course of the Middle Ages until its rediscovery in the context of the Egyptian campaign and the excavations in Pompeii and Herculaneum. [13] Later premodern synthetic pigments include white lead (basic lead carbonate, (PbCO3)2Pb(OH)2), [14] vermilion, verdigris, and lead-tin yellow. Vermilion, a mercury sulfide, was originally made by grinding a powder of natural cinnabar. From the 17th century on, it was also synthesized from the elements. [15] It was favored by old masters such as Titian. Indian yellow was once produced by collecting the urine of cattle that had been fed only mango leaves. [16] Dutch and Flemish painters of the 17th and 18th centuries favored it for its luminescent qualities, and often used it to represent sunlight.[ citation needed ] Since mango leaves are nutritionally inadequate for cattle, the practice of harvesting Indian yellow was eventually declared to be inhumane. [16] Modern hues of Indian yellow are made from synthetic pigments. Vermillion has been partially replaced in by cadmium reds.

Because of the cost of lapis lazuli, substitutes were often used. Prussian blue, the oldest modern synthetic pigment, was discovered by accident in 1704. [17] By the early 19th century, synthetic and metallic blue pigments included French ultramarine, a synthetic form of lapis lazuli. Ultramarine was manufactured by treating aluminium silicate with sulfur. Various forms of cobalt blue and Cerulean blue were also introduced. In the early 20th century, Phthalo Blue, a synthetic metallo-organic pigment was prepared. At the same time, Royal Blue, another name once given to tints produced from lapis lazuli, has evolved to signify a much lighter and brighter color, and is usually mixed from Phthalo Blue and titanium dioxide, or from inexpensive synthetic blue dyes.

The discovery in 1856 of mauveine, the first aniline dyes, was a forerunner for the development of hundreds of synthetic dyes and pigments like azo and diazo compounds. These dyes ushered in the flourishing of organic chemistry, including systematic designs of colorants. The development of organic chemistry diminished the dependence on inorganic pigments. [18]

Manufacturing and industrial standards

Natural ultramarine pigment in powdered form Natural ultramarine pigment.jpg
Natural ultramarine pigment in powdered form
Synthetic ultramarine pigment is chemically identical to natural ultramarine Ultramarinepigment.jpg
Synthetic ultramarine pigment is chemically identical to natural ultramarine

Before the development of synthetic pigments, and the refinement of techniques for extracting mineral pigments, batches of color were often inconsistent. With the development of a modern color industry, manufacturers and professionals have cooperated to create international standards for identifying, producing, measuring, and testing colors.

First published in 1905, the Munsell color system became the foundation for a series of color models, providing objective methods for the measurement of color. The Munsell system describes a color in three dimensions, hue, value (lightness), and chroma (color purity), where chroma is the difference from gray at a given hue and value.

By the middle 20th century, standardized methods for pigment chemistry were available, part of an international movement to create such standards in industry. The International Organization for Standardization (ISO) develops technical standards for the manufacture of pigments and dyes. ISO standards define various industrial and chemical properties, and how to test for them. The principal ISO standards that relate to all pigments are as follows:

Other ISO standards pertain to particular classes or categories of pigments, based on their chemical composition, such as ultramarine pigments, titanium dioxide, iron oxide pigments, and so forth.

Many manufacturers of paints, inks, textiles, plastics, and colors have voluntarily adopted the Colour Index International (CII) as a standard for identifying the pigments that they use in manufacturing particular colors. First published in 1925—and now published jointly on the web by the Society of Dyers and Colourists (United Kingdom) and the American Association of Textile Chemists and Colorists (US)—this index is recognized internationally as the authoritative reference on colorants. It encompasses more than 27,000 products under more than 13,000 generic color index names.

In the CII schema, each pigment has a generic index number that identifies it chemically, regardless of proprietary and historic names. For example, Phthalocyanine Blue BN has been known by a variety of generic and proprietary names since its discovery in the 1930s. In much of Europe, phthalocyanine blue is better known as Helio Blue, or by a proprietary name such as Winsor Blue. An American paint manufacturer, Grumbacher, registered an alternate spelling (Thanos Blue) as a trademark. Colour Index International resolves all these conflicting historic, generic, and proprietary names so that manufacturers and consumers can identify the pigment (or dye) used in a particular color product. In the CII, all phthalocyanine blue pigments are designated by a generic color index number as either PB15 or PB16, short for pigment blue 15 and pigment blue 16; these two numbers reflect slight variations in molecular structure, which produce a slightly more greenish or reddish blue.

Figures of merit

The following are some of the attributes of pigments that determine their suitability for particular manufacturing processes and applications:

Swatches

Swatches are used to communicate colors accurately. The types of swatches are dictated by the media, i.e., printing, computers, plastics, and textiles. Generally, the medium that offers the broadest gamut of color shades is widely used across diverse media.

Printed swatches

Reference standards are provided by printed swatches of color shades. PANTONE, RAL, Munsell, etc. are widely used standards of color communication across diverse media like printing, plastics, and textiles.

Plastic swatches

Companies manufacturing color masterbatches and pigments for plastics offer plastic swatches in injection molded color chips. These color chips are supplied to the designer or customer to choose and select the color for their specific plastic products.

Plastic swatches are available in various special effects like pearl, metallic, fluorescent, sparkle, mosaic etc. However, these effects are difficult to replicate on other media like print and computer display. Plastic swatches have been created by 3D modelling to including various special effects.

Computer swatches

The appearance of pigments in natural light is difficult to replicate on a computer display. Approximations are required. The Munsell Color System provides an objective measure of color in three dimensions: hue, value (or lightness), and chroma. Computer displays in general fail to show the true chroma of many pigments, but the hue and lightness can be reproduced with relative accuracy. However, when the gamma of a computer display deviates from the reference value, the hue is also systematically biased.

The following approximations assume a display device at gamma 2.2, using the sRGB color space. The further a display device deviates from these standards, the less accurate these swatches will be. [20] Swatches are based on the average measurements of several lots of single-pigment watercolor paints, converted from Lab color space to sRGB color space for viewing on a computer display. The appearance of a pigment may depend on the brand and even the batch. Furthermore, pigments have inherently complex reflectance spectra that will render their color appearance [21] [ better source needed ] greatly different depending on the spectrum of the source illumination, a property called metamerism. Averaged measurements of pigment samples will only yield approximations of their true appearance under a specific source of illumination. Computer display systems use a technique called chromatic adaptation transforms [22] to emulate the correlated color temperature of illumination sources, and cannot perfectly reproduce the intricate spectral combinations originally seen. In many cases, the perceived color of a pigment falls outside of the gamut of computer displays and a method called gamut mapping is used to approximate the true appearance. Gamut mapping trades off any one of lightness, hue, or saturation accuracy to render the color on screen, depending on the priority chosen in the conversion's ICC rendering intent.

#990024
PR106 – #E34234
Vermilion (genuine)
#FFB02E
PB29 – #003BAF
PB27 – #0B3E66

Biological pigments

In biology, a pigment is any colored material of plant or animal cells. Many biological structures, such as skin, eyes, fur, and hair contain pigments (such as melanin). Animal skin coloration often comes about through specialized cells called chromatophores, which animals such as the octopus and chameleon can control to vary the animal's color. Many conditions affect the levels or nature of pigments in plant, animal, some protista, or fungus cells. For instance, the disorder called albinism affects the level of melanin production in animals.

Pigmentation in organisms serves many biological purposes, including camouflage, mimicry, aposematism (warning), sexual selection and other forms of signalling, photosynthesis (in plants), and basic physical purposes such as protection from sunburn.

Pigment color differs from structural color in that pigment color is the same for all viewing angles, whereas structural color is the result of selective reflection or iridescence, usually because of multilayer structures. For example, butterfly wings typically contain structural color, although many butterflies have cells that contain pigment as well.

Pigments by chemical composition

Phthalo Blue Copper phthalocyanine.svg
Phthalo Blue

Biological and organic

See also

Notes

  1. Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. (2016). "Dyes and Pigments: Their Structure and Properties". Dyes and Pigments. Springer. pp. 13–29. doi:10.1007/978-3-319-33892-7_2. Dyes are colored substances which are soluble or go into solution during the application process and impart color by selective absorption of light. Pigments are colored, colorless, or fluorescent particulate organic or inorganic finely divided solids which are usually insoluble in, and essentially chemically unaffected by, the vehicle or medium in which they are incorporated.
  2. Völz, Hans G.; et al. "Pigments, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a20_243.pub2. ISBN   3527306730.
  3. Sahoo, Annapurna; Panigrahi, G. K. (1 September 2016). "A review on Natural Dye: Gift from bacteria" (PDF). International Journal of Business. 5 (9): 4909.
  4. Schonbrun, Zach (18 April 2018). "The Quest for the Next Billion-Dollar Color". Bloomberg Businessweek . Retrieved 2 May 2018.
  5. Thomas B. Brill, Light: Its Interaction with Art and Antiquities, Springer 1980, p. 204
  6. St. Clair, Kassia (2016). The Secret Lives of Colour. London: John Murray. pp. 21, 237. ISBN   9781473630819. OCLC   936144129.
  7. "Earliest evidence of art found". BBC News. 2 May 2000. Archived from the original on 3 June 2016. Retrieved 1 May 2016.
  8. 1 2 "Pigments Through the Ages". WebExhibits.org. Archived from the original on 11 October 2007. Retrieved 18 October 2007.
  9. Lorelei H. Corcoran, "The Color Blue as an 'Animator' in Ancient Egyptian Art", in Rachael B.Goldman, (ed.), Essays in Global Color History: Interpreting the Ancient Spectrum (New Jersey: Gorgias Press, 2016), pp. 59–82.
  10. Rossotti, Hazel (1983). Colour: Why the World Isn't Grey. Princeton, NJ: Princeton University Press. ISBN   0-691-02386-7.
  11. Berke, Heinz (2007). "The invention of blue and purple pigments in ancient times". Chemical Society Reviews. 36 (1): 15–30. doi:10.1039/b606268g. PMID   17173142.
  12. Hatton, G.D.; Shortland, A.J.; Tite, M.S. (2008). "The production technoloty of Egyptian blue and green frits from second millenium BC Egypt and Mesopotamia". Journal of Archaeological Science. 35 (6): 1591–1604. doi:10.1016/j.jas.2007.11.008.
  13. Dariz, Petra; Schmid, Thomas (2021). "Trace compounds in Early Medieval Egyptian blue carry information on provenance, manufacture, application, and ageing". Scientific Reports. 11 (11296): 11296. Bibcode:2021NatSR..1111296D. doi:10.1038/s41598-021-90759-6. PMC   8163881 . PMID   34050218.
  14. Lead white Archived 25 December 2015 at the Wayback Machine at ColourLex
  15. St. Clair, Kassia (2016). The Secret Lives of Colour. London: John Murray. p. 146. ISBN   9781473630819. OCLC   936144129.
  16. 1 2 "History of Indian yellow". Pigments Through the Ages. Archived from the original on 21 December 2014. Retrieved 13 February 2015.
  17. Prussian blue at ColourLex
  18. Simon Garfield (2000). Mauve: How One Man Invented a Color That Changed the World. Faber and Faber. ISBN   0-393-02005-3.
  19. Johannes Vermeer, The Milkmaid Archived 14 April 2015 at the Wayback Machine , ColourLex
  20. "Dictionary of Color Terms". Gamma Scientific. Archived from the original on 20 August 2014. Retrieved 25 June 2014.
  21. "Color Appearance". Hello Artsy. 2 September 2013.
  22. "Chromatic Adaptation". cmp.uea.ac.uk. Archived from the original on 29 September 2007. Retrieved 16 April 2009.
  23. Engineer Manual 1110-2-3400 Painting: New Construction and Maintenance (PDF). 30 April 1995. pp. 4–12. Archived (PDF) from the original on 1 December 2017. Retrieved 24 November 2017.

Related Research Articles

<span class="mw-page-title-main">Blue</span> Colour between violet and cyan on the visible spectrum of light

Blue is one of the three primary colours in the RYB colour model, as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The term blue generally describes colors perceived by humans observing light with a dominant wavelength between approximately 450 and 495 nanometres. Most blues contain a slight mixture of other colours; azure contains some green, while ultramarine contains some violet. The clear daytime sky and the deep sea appear blue because of an optical effect known as Rayleigh scattering. An optical effect called the Tyndall effect explains blue eyes. Distant objects appear more blue because of another optical effect called aerial perspective.

<span class="mw-page-title-main">Cyan</span> Color visible between blue and green on the visible spectrum; subtractive (CMY) primary color

Cyan is the color between blue and green on the visible spectrum of light. It is evoked by light with a predominant wavelength between 490 and 520 nm, between the wavelengths of green and blue.

Sienna is an earth pigment containing iron oxide and manganese oxide. In its natural state, it is yellowish brown, and it is called raw sienna. When heated, it becomes a reddish brown, and it is called burnt sienna. It takes its name from the city-state of Siena, where it was produced more widely during the Renaissance. Along with ochre and umber, it was one of the first pigments to be used by humans, and is found in many cave paintings. Since the Renaissance, it has been one of the brown pigments most widely used by artists.

<span class="mw-page-title-main">Yellow</span> Color between orange and green on the visible spectrum of light

Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575–585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In the RGB color model, used to create colors on television and computer screens, yellow is a secondary color made by combining red and green at equal intensity. Carotenoids give the characteristic yellow color to autumn leaves, corn, canaries, daffodils, and lemons, as well as egg yolks, buttercups, and bananas. They absorb light energy and protect plants from photo damage in some cases. Sunlight has a slight yellowish hue when the Sun is near the horizon, due to atmospheric scattering of shorter wavelengths.

<span class="mw-page-title-main">Purple</span> Range of colors with the hues between blue and red

Purple is a color similar in appearance to violet light. In the RYB color model historically used in the arts, purple is a secondary color created by combining red and blue pigments. In the CMYK color model used in modern printing, purple is made by combining magenta pigment with either cyan pigment, black pigment, or both. In the RGB color model used in computer and television screens, purple is created by mixing red and blue light in order to create colors that appear similar to violet light.

<span class="mw-page-title-main">Ultramarine</span> Deep blue purple color pigment which was originally made with ground lapis lazuli

Ultramarine is a deep blue color pigment which was originally made by grinding lapis lazuli into a powder. Its lengthy grinding and washing process makes the natural pigment quite valuable—roughly ten times more expensive than the stone it comes from and as expensive as gold.

<span class="mw-page-title-main">Lapis lazuli</span> Metamorphic rock containing lazurite, prized for its intense blue color

Lapis lazuli, or lapis for short, is a deep-blue metamorphic rock used as a semi-precious stone that has been prized since antiquity for its intense color. Originating from the Persian word lazhuward meaning 'blue', lapis lazuli is a rock composed primarily of the minerals lazurite, pyrite and calcite. As early as the 7th millennium BC, lapis lazuli was mined in the Sar-i Sang mines, in Shortugai, and in other mines in Badakhshan province in modern northeast Afghanistan. Lapis lazuli artifacts, dated to 7570 BC, have been found at Bhirrana, which is the oldest site of Indus Valley civilisation. Lapis was highly valued by the Indus Valley Civilisation. Lapis beads have been found at Neolithic burials in Mehrgarh, the Caucasus, and as far away as Mauritania. It was used in the funeral mask of Tutankhamun.

<span class="mw-page-title-main">Orange (colour)</span> Colour, located between red and yellow in the spectrum of light

Orange is the colour between yellow and red on the spectrum of visible light. Human eyes perceive orange when observing light with a dominant wavelength between roughly 585 and 620 nanometres. In traditional colour theory, it is a secondary colour of pigments, produced by mixing yellow and red. In the RGB colour model, it is a tertiary colour. It is named after the fruit of the same name.

<span class="mw-page-title-main">Umber</span> Earth pigment

Umber is a natural earth pigment consisting of iron oxide and manganese oxide; it has a brownish color that can vary among shades of yellow, red, and green. Umber is considered one of the oldest pigments known to humans, first seen in Ajanta Caves in 200 BC – 600 AD. Umber's advantages are its highly versatile color, warm tone, and quick drying abilities. While some sources indicate that umber's name comes from its geographic origin in Umbria, other scholars suggest that it derives from the Latin word umbra, which means "shadow". The belief that its name derives from the word for shadow is fitting, as the color helps create shadows. The color is primarily produced in Cyprus. Umber is typically mined from open pits or underground mines and ground into a fine powder that is washed to remove impurities. In the 20th century, the rise of synthetic dyes decreased the demand for natural pigments such as umber.

<span class="mw-page-title-main">Copper phthalocyanine</span> Synthetic blue pigment from the group of phthalocyanine dyes

Copper phthalocyanine (CuPc), also called phthalocyanine blue, phthalo blue and many other names, is a bright, crystalline, synthetic blue pigment from the group of phthalocyanine dyes. Its brilliant blue is frequently used in paints and dyes. It is highly valued for its superior properties such as light fastness, tinting strength, covering power and resistance to the effects of alkalis and acids. It has the appearance of a blue powder, insoluble in most solvents including water.

Earth tone is a term used to describe a palette of colors that are similar to natural materials and landscapes. These colors are inspired by the earth's natural hues, including browns, greens, grays, and other warm and muted shades. The term earth tone first became popular in the 1970s during the environmental movement, as people sought to reconnect with nature and embrace more natural and organic lifestyles.

<span class="mw-page-title-main">Shades of blue</span> Variety of the color blue

Varieties of the color blue may differ in hue, chroma, or lightness, or in two or three of these qualities. Variations in value are also called tints and shades, a tint being a blue or other hue mixed with white, a shade being mixed with black. A large selection of these colors are shown below.

<span class="mw-page-title-main">YInMn Blue</span> Inorganic blue pigment

YInMn Blue, also known as Oregon Blue or Mas Blue, is an inorganic blue pigment that was discovered by Mas Subramanian and his (then) graduate student, Andrew Smith, at Oregon State University in 2009. The pigment is noteworthy for its vibrant, near-perfect blue color and unusually high NIR reflectance. The chemical compound has a unique crystal structure in which trivalent manganese ions in the trigonal bipyramidal coordination are responsible for the observed intense blue color. Since the initial discovery, the fundamental principles of colour science have been explored extensively by the Subramanian research team at Oregon State University, resulting in a wide range of rationally designed novel green, purple, and orange pigments, all through intentional addition of a chromophore in the trigonal bipyramidal coordination environment.

<span class="mw-page-title-main">Synthetic colorant</span>


A colorant is any substance that changes the spectral transmittance or reflectance of a material. Synthetic colorants are those created in a laboratory or industrial setting. The production and improvement of colorants was a driver of the early synthetic chemical industry, in fact many of today's largest chemical producers started as dye-works in the late 19th or early 20th centuries, including Bayer AG(1863). Synthetics are extremely attractive for industrial and aesthetic purposes as they have they often achieve higher intensity and color fastness than comparable natural pigments and dyes used since ancient times. Market viable large scale production of dyes occurred nearly simultaneously in the early major producing countries Britain (1857), France (1858), Germany (1858), and Switzerland (1859), and expansion of associated chemical industries followed. The mid-nineteenth century through WWII saw an incredible expansion of the variety and scale of manufacture of synthetic colorants. Synthetic colorants quickly became ubiquitous in everyday life, from clothing to food. This stems from the invention of industrial research and development laboratories in the 1870s, and the new awareness of empirical chemical formulas as targets for synthesis by academic chemists. The dye industry became one of the first instances where directed scientific research lead to new products, and the first where this occurred regularly.

<span class="mw-page-title-main">Blue in culture</span>

The colour blue has been important in culture, politics, art and fashion since ancient times. Blue was used in ancient Egypt for jewellery and ornament. In the Renaissance, blue pigments were prized for paintings and fine blue and white porcelain. in the Middle Ages, deep rich blues made with cobalt were used in stained glass windows. In the 19th century, the colour was often used for military uniforms and fashion.

<span class="mw-page-title-main">Blue pigments</span>

Blue pigments are natural or synthetic materials, usually made from minerals and insoluble with water, used to make the blue colors in painting and other arts. The raw material of the earliest blue pigment was lapis lazuli from mines in Afghanistan, that was refined into the pigment ultramarine. Since the late 18th and 19th century, blue pigments are largely synthetic, manufactured in laboratories and factories.

<span class="mw-page-title-main">Red pigments</span> Materials used to make red colors in painting

Red pigments are materials, usually made from minerals, used to create the red colors in painting and other arts. The color of red and other pigments is determined by the way it absorbs certain parts of the spectrum of visible light and reflects the others. The brilliant opaque red of vermillion, for example, results because vermillion reflects the major part of red light, but absorbs the blue, green and yellow parts of white light.

<span class="mw-page-title-main">Green pigments</span> Substances reflecting light between 475-590 nm

Green pigments are the materials used to create the green colors seen in painting and the other arts. Most come from minerals, particularly those containing compounds of copper. Green pigments reflect the green portions of the spectrum of visible light, and absorb the others. Important green pigments in art history include Malachite and Verdigris, found in tomb paintings in Ancient Egypt, and the Green earth pigments popular in the Middle Ages. More recent greens, such as Cobalt Green, are largely synthetic, made in laboratories and factories.

References