Gamma correction

Last updated
The effect of gamma correction on an image: The original image was taken to varying powers, showing that powers larger than 1 make the shadows darker, while powers smaller than 1 make dark regions lighter. GammaCorrection demo.jpg
The effect of gamma correction on an image: The original image was taken to varying powers, showing that powers larger than 1 make the shadows darker, while powers smaller than 1 make dark regions lighter.

Gamma correction, or often simply gamma, is a nonlinear operation used to encode and decode luminance or tristimulus values in video or still image systems. [1] Gamma correction is, in the simplest cases, defined by the following power-law expression:

Contents

where the non-negative real input value is raised to the power and multiplied by the constant A, to get the output value . In the common case of A = 1, inputs and outputs are typically in the range 0–1.

A gamma value is sometimes called an encoding gamma, and the process of encoding with this compressive power-law nonlinearity is called gamma compression; conversely a gamma value is called a decoding gamma and the application of the expansive power-law nonlinearity is called gamma expansion.

Explanation

Gamma encoding of images is used to optimize the usage of bits when encoding an image, or bandwidth used to transport an image, by taking advantage of the non-linear manner in which humans perceive light and color. [1] The human perception of brightness, under common illumination conditions (neither pitch black nor blindingly bright), follows an approximate power function (note: no relation to the gamma function), with greater sensitivity to relative differences between darker tones than between lighter tones, consistent with the Stevens power law for brightness perception. If images are not gamma-encoded, they allocate too many bits or too much bandwidth to highlights that humans cannot differentiate, and too few bits or too little bandwidth to shadow values that humans are sensitive to and would require more bits/bandwidth to maintain the same visual quality. [2] [1] [3] Gamma encoding of floating-point images is not required (and may be counterproductive), because the floating-point format already provides a piecewise linear approximation of a logarithmic curve. [4]

Although gamma encoding was developed originally to compensate for the input–output characteristic of cathode ray tube (CRT) displays, that is not its main purpose or advantage in modern systems. In CRT displays, the light intensity varies nonlinearly with the electron-gun voltage. Altering the input signal by gamma compression can cancel this nonlinearity, such that the output picture has the intended luminance. However, the gamma characteristics of the display device do not play a factor in the gamma encoding of images and video—they need gamma encoding to maximize the visual quality of the signal, regardless of the gamma characteristics of the display device. [1] [3] The similarity of CRT physics to the inverse of gamma encoding needed for video transmission was a combination of coincidence and engineering, which simplified the electronics in early television sets. [5]

Mathematics

It is often casually stated that, for instance, the decoding gamma for sRGB data is 2.2, yet the actual exponent is 2.4. This is because the net effect of the piecewise decomposition is necessarily a changing instantaneous gamma at each point in the range: It goes from γ = 1 at zero to a gamma of 2.4 at maximum intensity with a median value being close to 2.2. Transformations can be designed to approximate a certain gamma with a linear portion near zero to avoid having an infinite slope at K = 0, which can cause numerical problems. The continuity condition for the curve gives the linear-domain threshold :

Solving for gives two solutions which are usually rounded. However, for the slopes match as well then we must have

If the two unknowns are taken to be and then we can solve to give

Generalized gamma

The concept of gamma can be applied to any nonlinear relationship. For the power-law relationship , the curve on a log–log plot is a straight line, with slope everywhere equal to gamma (slope is represented here by the derivative operator):

That is, gamma can be visualized as the slope of the input–output curve when plotted on logarithmic axes. For a power-law curve, this slope is constant, but the idea can be extended to any type of curve, in which case gamma (strictly speaking, "point gamma" [6] ) is defined as the slope of the curve in any particular region.

Film photography

When a photographic film is exposed to light, the result of the exposure can be represented on a graph showing log of exposure on the horizontal axis, and density, or log of transmittance, on the vertical axis. For a given film formulation and processing method, this curve is its characteristic or Hurter–Driffield curve. [7] [8] Since both axes use logarithmic units, the slope of the linear section of the curve is called the gamma of the film. Negative film typically has a gamma less than 1; [8] [9] positive film (slide film, reversal film) typically has a gamma with absolute value greater than 1. [10]

Photographic film has a much greater ability to record fine differences in shade than can be reproduced on photographic paper. Similarly, most video screens are not capable of displaying the range of brightnesses (dynamic range) that can be captured by typical electronic cameras. [11] For this reason, considerable artistic effort is invested in choosing the reduced form in which the original image should be presented. The gamma correction, or contrast selection, is part of the photographic repertoire used to adjust the reproduced image.

Analogously, digital cameras record light using electronic sensors that usually respond linearly. In the process of rendering linear raw data to conventional RGB data (e.g. for storage into JPEG image format), color space transformations and rendering transformations will be performed. In particular, almost all standard RGB color spaces and file formats use a non-linear encoding (a gamma compression) of the intended intensities of the primary colors of the photographic reproduction; in addition, the intended reproduction is almost always nonlinearly related to the measured scene intensities, via a tone reproduction nonlinearity.

Microsoft Windows, Mac, sRGB and TV/video standard gammas

Plot of the sRGB standard gamma-expansion nonlinearity in red, and its local gamma value (slope in log-log space) in blue. The local gamma rises from 1 to about 2.2. SRGB gamma.svg
Plot of the sRGB standard gamma-expansion nonlinearity in red, and its local gamma value (slope in log–log space) in blue. The local gamma rises from 1 to about 2.2.

In most computer display systems, images are encoded with a gamma of about 0.45 and decoded with the reciprocal gamma of 2.2. A notable exception, until the release of Mac OS X 10.6 (Snow Leopard) in September 2009, were Macintosh computers, which encoded with a gamma of 0.55 and decoded with a gamma of 1.8. In any case, binary data in still image files (such as JPEG) are explicitly encoded (that is, they carry gamma-encoded values, not linear intensities), as are motion picture files (such as MPEG). The system can optionally further manage both cases, through color management, if a better match to the output device gamma is required.

The sRGB color space standard used with most cameras, PCs, and printers does not use a simple power-law nonlinearity as above, but has a decoding gamma value near 2.2 over much of its range, as shown in the plot to the right. Below a compressed value of 0.04045 or a linear intensity of 0.00313, the curve is linear (encoded value proportional to intensity), so γ = 1. The dashed black curve behind the red curve is a standard γ = 2.2 power-law curve, for comparison.

Output to CRT-based television receivers and monitors does not usually require further gamma correction, since the standard video signals that are transmitted or stored in image files incorporate gamma compression that provides a pleasant image after the gamma expansion of the CRT (it is not the exact inverse). For television signals, the actual gamma values are defined by the video standards (NTSC, PAL or SECAM), and are always fixed and well-known values.

Gamma correction in computers is used, for example, to display a gamma = 1.8 Apple picture correctly on a gamma = 2.2 PC monitor by changing the image gamma. Another usage is equalizing of the individual color-channel gammas to correct for monitor discrepancies.

Gamma meta information

Some picture formats include gamma metadata to allow the display system an automatic gamma correction. The PNG format has the gAMA metadata, the Exif format has the Gamma tag. The W3 PNG gamma test images show that the Mozilla Firefox browser supports PNG gAMA and the Microsoft Explorer and Edge browsers do not. The gamma metadata is part of the color management meta information. See color management application level for web browser color management support.

Power law for video display

A gamma characteristic is a power-law relationship that approximates the relationship between the encoded luma in a television system and the actual desired image luminance.

With this nonlinear relationship, equal steps in encoded luminance correspond roughly to subjectively equal steps in brightness. Ebner and Fairchild [12] used an exponent of 0.43 to convert linear intensity into lightness (luma) for neutrals; the reciprocal, approximately 2.33 (quite close to the 2.2 figure cited for a typical display subsystem), was found to provide approximately optimal perceptual encoding of grays.

The following illustration shows the difference between a scale with linearly-increasing encoded luminance signal (linear gamma-compressed luma input) and a scale with linearly-increasing intensity scale (linear luminance output).

Linear encodingVS =  0.00.10.20.30.40.50.60.70.80.91.0
Linear intensity I = 0.00.10.20.30.40.50.60.70.80.91.0

On most displays (those with gamma of about 2.2), one can observe that the linear-intensity scale has a large jump in perceived brightness between the intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly perceptible. The gamma-encoded scale, which has a nonlinearly-increasing intensity, will show much more even steps in perceived brightness.

A cathode ray tube (CRT), for example, converts a video signal to light in a nonlinear way, because the electron gun's intensity (brightness) as a function of applied video voltage is nonlinear. The light intensity I is related to the source voltage Vs according to

where γ is the Greek letter gamma. For a CRT, the gamma that relates brightness to voltage is usually in the range 2.35 to 2.55; video look-up tables in computers usually adjust the system gamma to the range 1.8 to 2.2, [1] which is in the region that makes a uniform encoding difference give approximately uniform perceptual brightness difference, as illustrated in the diagram at the top of this section.

For simplicity, consider the example of a monochrome CRT. In this case, when a video signal of 0.5 (representing a mid-gray) is fed to the display, the intensity or brightness is about 0.22 (resulting in a mid-gray, about 22% the intensity of white). Pure black (0.0) and pure white (1.0) are the only shades that are unaffected by gamma.

To compensate for this effect, the inverse transfer function (gamma correction) is sometimes applied to the video signal so that the end-to-end response is linear. In other words, the transmitted signal is deliberately distorted so that, after it has been distorted again by the display device, the viewer sees the correct brightness. The inverse of the function above is:

where Vc is the corrected voltage and Vs is the source voltage, for example from an image sensor that converts photocharge linearly to a voltage. In our CRT example 1/γ is 1/2.2 or 0.45.

A color CRT receives three video signals (red, green, and blue) and in general each color has its own value of gamma, denoted γR, γG or γB. However, in simple display systems, a single value of γ is used for all three colors.

Other display devices have different values of gamma: for example, a Game Boy Advance display has a gamma between 3 and 4 depending on lighting conditions. In LCDs such as those on laptop computers, the relation between the signal voltage Vs and the intensity I is very nonlinear and cannot be described with gamma value. However, such displays apply a correction onto the signal voltage in order to approximately get a standard γ = 2.5 behavior. In NTSC television recording, γ = 2.2.

The power-law function, or its inverse, has a slope of infinity at zero. This leads to problems in converting from and to a gamma colorspace. For this reason most formally defined colorspaces such as sRGB will define a straight-line segment near zero and add raising x + K (where K is a constant) to a power so the curve has continuous slope. This straight line does not represent what the CRT does, but does make the rest of the curve more closely match the effect of ambient light on the CRT. In such expressions the exponent is not the gamma; for instance, the sRGB function uses a power of 2.4 in it, but more closely resembles a power-law function with an exponent of 2.2, without a linear portion.

Methods to perform display gamma correction in computing

Up to four elements can be manipulated in order to achieve gamma encoding to correct the image to be shown on a typical 2.2- or 1.8-gamma computer display:

In a correctly calibrated system, each component will have a specified gamma for its input and/or output encodings. [14] Stages may change the gamma to correct for different requirements, and finally the output device will do gamma decoding or correction as needed, to get to a linear intensity domain. All the encoding and correction methods can be arbitrarily superimposed, without mutual knowledge of this fact among the different elements; if done incorrectly, these conversions can lead to highly distorted results, but if done correctly as dictated by standards and conventions will lead to a properly functioning system.

In a typical system, for example from camera through JPEG file to display, the role of gamma correction will involve several cooperating parts. The camera encodes its rendered image into the JPEG file using one of the standard gamma values such as 2.2, for storage and transmission. The display computer may use a color management engine to convert to a different color space (such as older Macintosh's γ = 1.8 color space) before putting pixel values into its video memory. The monitor may do its own gamma correction to match the CRT gamma to that used by the video system. Coordinating the components via standard interfaces with default standard gamma values makes it possible to get such system properly configured.

Simple monitor tests

Gamma correction test image. Only valid at browser zoom = 100% Gamma correction test picture.png
Gamma correction test image. Only valid at browser zoom = 100%

This procedure is useful for making a monitor display images approximately correctly, on systems in which profiles are not used (for example, the Firefox browser prior to version 3.0 and many others) or in systems that assume untagged source images are in the sRGB colorspace.

In the test pattern, the intensity of each solid color bar is intended to be the average of the intensities in the surrounding striped dither; therefore, ideally, the solid areas and the dithers should appear equally bright in a system properly adjusted to the indicated gamma.

Normally a graphics card has contrast and brightness control and a transmissive LCD monitor has contrast, brightness, and backlight control. Graphics card and monitor contrast and brightness have an influence on effective gamma, and should not be changed after gamma correction is completed.

The top two bars of the test image help to set correct contrast and brightness values. There are eight three digits numbers in each bar. A good monitor with proper calibration shows the six numbers on the right in both bars, a cheap monitor shows only four numbers.

Given a desired display-system gamma, if the observer sees the same brightness in the checkered part and in the homogeneous part of every colored area, then the gamma correction is approximately correct. [15] [16] [17] In many cases the gamma correction values for the primary colors are slightly different.

Setting the color temperature or white point is the next step in monitor adjustment.

Before gamma correction the desired gamma and color temperature should be set using the monitor controls. Using the controls for gamma, contrast and brightness, the gamma correction on a LCD can only be done for one specific vertical viewing angle, which implies one specific horizontal line on the monitor, at one specific brightness and contrast level. An ICC profile allows to adjust the monitor for several brightness levels. The quality (and price) of the monitor determines how much deviation of this operating point still gives a satisfactory gamma correction. Twisted nematic (TN) displays with 6-bit color depth per primary color have lowest quality. In-plane switching (IPS) displays with typically 8-bit color depth are better. Good monitors have 10-bit color depth, have hardware color management and allow hardware calibration with a tristimulus colorimeter. Often a 6bit plus FRC panel is sold as 8bit and a 8bit plus FRC panel is sold as 10bit. FRC is no true replacement for more bits. The 24-bit and 32-bit color depth formats have 8 bits per primary color.

With Microsoft Windows 7 and above the user can set the gamma correction through the display color calibration tool dccw.exe or other programs. [18] [19] [20] These programs create an ICC profile file and load it as default. This makes color management easy. [21] Increase the gamma slider in the dccw program until the last colored area, often the green color, has the same brightness in checkered and homogeneous area. Use the color balance or individual colors gamma correction sliders in the gamma correction programs to adjust the two other colors. Some old graphics card drivers do not load the color Look Up Table correctly after waking up from standby or hibernate mode and show wrong gamma. In this case update the graphics card driver.

On some operating systems running the X Window System, one can set the gamma correction factor (applied to the existing gamma value) by issuing the command xgamma -gamma 0.9 for setting gamma correction factor to 0.9, and xgamma for querying current value of that factor (the default is 1.0). In macOS systems, the gamma and other related screen calibrations are made through the System Preferences.

Terminology

The term intensity refers strictly to the amount of light that is emitted per unit of time and per unit of surface, in units of lux. Note, however, that in many fields of science this quantity is called luminous exitance, as opposed to luminous intensity, which is a different quantity. These distinctions, however, are largely irrelevant to gamma compression, which is applicable to any sort of normalized linear intensity-like scale.

"Luminance" can mean several things even within the context of video and imaging:

One contrasts relative luminance in the sense of color (no gamma compression) with luma in the sense of video (with gamma compression), and denote relative luminance by Y and luma by Y′, the prime symbol (′) denoting gamma compression. [22] Note that luma is not directly calculated from luminance, it is the (somewhat arbitrary) weighted sum of gamma compressed RGB components. [1]

Likewise, brightness is sometimes applied to various measures, including light levels, though it more properly applies to a subjective visual attribute.

Gamma correction is a type of power law function whose exponent is the Greek letter gamma (γ). It should not be confused with the mathematical Gamma function. The lower case gamma, γ, is a parameter of the former; the upper case letter, Γ, is the name of (and symbol used for) the latter (as in Γ(x)). To use the word "function" in conjunction with gamma correction, one may avoid confusion by saying "generalized power law function".

Without context, a value labeled gamma might be either the encoding or the decoding value. Caution must be taken to correctly interpret the value as that to be applied-to-compensate or to be compensated-by-applying its inverse. In common parlance, in many occasions the decoding value (as 2.2) is employed as if it were the encoding value, instead of its inverse (1/2.2 in this case), which is the real value that must be applied to encode gamma.

See also

Related Research Articles

Alpha compositing

In computer graphics, alpha compositing is the process of combining one image with a background to create the appearance of partial or full transparency. It is often useful to render picture elements (pixels) in separate passes or layers and then combine the resulting 2D images into a single, final image called the composite. Compositing is used extensively in film when combining computer-rendered image elements with live footage. Alpha blending is also used in 2D computer graphics to put rasterized foreground elements over a background.

RGB color model additive color model based on combining red, green, and blue

The RGB color model is an additive color model in which red, green, and blue light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

YUV color space typically used as part of a color image pipeline

YUV is a color encoding system typically used as part of a color image pipeline. It encodes a color image or video taking human perception into account, allowing reduced bandwidth for chrominance components, thereby typically enabling transmission errors or compression artifacts to be more efficiently masked by the human perception than using a "direct" RGB-representation. Other color encodings have similar properties, and the main reason to implement or investigate properties of Y′UV would be for interfacing with analog or digital television or photographic equipment that conforms to certain Y′UV standards.

High-dynamic-range imaging high dynamic range technique used in imaging and photography

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than what is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

In digital photography, computer-generated imagery, and colorimetry, a grayscale or greyscale image is one in which the value of each pixel is a single sample representing only an amount of light, that is, it carries only intensity information. Grayscale images, a kind of black-and-white or gray monochrome, are composed exclusively of shades of gray. The contrast ranges from black at the weakest intensity to white at the strongest.

YCbCr

YCbCr, Y′CbCr, or Y Pb/Cb Pr/Cr, also written as YCBCR or Y'CBCR, is a family of color spaces used as a part of the color image pipeline in video and digital photography systems. Y is the luma component and CB and CR are the blue-difference and red-difference chroma components. Y′ is distinguished from Y, which is luminance, meaning that light intensity is nonlinearly encoded based on gamma corrected RGB primaries.

sRGB standard RGB color space

sRGB is an RGB color space that HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the Internet. It was subsequently standardized by the IEC as IEC 61966-2-1:1999. It is often the "default" color space for images that contain no color space information, especially if the images' pixels are stored in 8-bit integers per color channel.

Adobe RGB color space RGB color space developed by Adobe Systems in 1998

The Adobe RGB (1998) color space is a color space developed by Adobe Systems, Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 50% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues.

Tone mapping Image processing technique

Tone mapping is a technique used in image processing and computer graphics to map one set of colors to another to approximate the appearance of high-dynamic-range images in a medium that has a more limited dynamic range. Print-outs, CRT or LCD monitors, and projectors all have a limited dynamic range that is inadequate to reproduce the full range of light intensities present in natural scenes. Tone mapping addresses the problem of strong contrast reduction from the scene radiance to the displayable range while preserving the image details and color appearance important to appreciate the original scene content.

Relative luminance follows the photometric definition of luminance, but with the values normalized to 1 or 100 for a reference white. Like the photometric definition, it is related to the luminous flux density in a particular direction, which is radiant flux density weighted by the luminosity function y(λ) of the CIE Standard Observer.

In video, luma represents the brightness in an image. Luma is typically paired with chrominance. Luma represents the achromatic image, while the chroma components represent the color information. Converting R′G′B′ sources into luma and chroma allows for chroma subsampling: because human vision has finer spatial sensitivity to luminance differences than chromatic differences, video systems can store and transmit chromatic information at lower resolution, optimizing perceived detail at a particular bandwidth.

Lightness property of a color

In colorimetry and color theory, lightness, also known as value or tone, is a representation of variation in the perception of a color or color space's brightness. It is one of the color appearance parameters of any color appearance model.

Rec. 709 ITU-R recommendation

ITU-R Recommendation BT.709, also known by the abbreviations Rec. 709, BT.709, and ITU709, standardizes the format of high-definition television, having 16:9 (widescreen) aspect ratio. The first edition of the standard was approved in 1990.

Color space Standard that defines a specific range of colors

A color space is a specific organization of colors. In combination with physical device profiling, it allows for reproducible representations of color, in both analog and digital representations. A color space may be arbitrary, with particular colors assigned to a set of physical color swatches and corresponding assigned color names or numbers, or structured mathematically.

HCL color space

HCL (Hue-Chroma-Luminance) or Lch refers to any of the many cylindrical color space models that are designed to accord with human perception of color with the three parameters. Lch has been adopted by information visualization practitioners to present data without the bias implicit in using varying saturation. They are, in general, designed to have characteristics of both cylindrical translations of the RGB color space, such as HSL and HSV, and the L*a*b* color space.. Some conflicting definitions of the terms are:

Standard-dynamic-range (SDR) video describes images/rendering/video using a conventional gamma curve, and therefore presenting a dynamic range that is considered standard, as opposed to high-dynamic-range (HDR) video. The conventional gamma curve was based on the limits of the cathode ray tube (CRT) which allows for a maximum luminance of 100 cd/m2. The first CRT television sets were manufactured in 1934 and the first color CRT television sets were manufactured in 1954.

<i>ICtCp</i>

ICTCP, ICtCp, or ITP is a patented color representation format specified in the Rec. ITU-R BT.2100 standard that is used as a part of the color image pipeline in video and digital photography systems for high dynamic range (HDR) and wide color gamut (WCG) imagery. It was developed by Dolby Laboratories from the IPT color space by Ebner and Fairchild. The format is derived from an associated RGB color space by a coordinate transformation that includes two matrix transformations and an intermediate nonlinear transfer function that is informally known as gamma pre-correction. The transformation produces three signals called I, CT, and CP. The ICTCP transformation can be used with RGB signals derived from either the perceptual quantizer (PQ) or hybrid log-gamma (HLG) nonlinearity functions, but is most commonly associated with the PQ function.

High-dynamic-range video describes video having a dynamic range greater than that of standard-dynamic-range video. HDR video involves capture, production, content/encoding, and display. HDR capture and displays are capable of brighter whites and deeper blacks. To accommodate this, HDR encoding standards allow for a higher maximum luminance and use at least a 10-bit dynamic range in order to maintain precision across this extended range.

References

  1. 1 2 3 4 5 6 Charles A. Poynton (2003). Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann. pp. 260, 630. ISBN   1-55860-792-7.
  2. "PNG Specification 13. Appendix: Gamma Tutorial". W3C. 1996-10-01. Retrieved 2018-12-03. What is gamma correction?
  3. 1 2 Charles Poynton (2010). Frequently Questioned Answers about Gamma.
  4. Erik Reinhard; Wolfgang Heidrich; Paul Debevec; Sumanta Pattanaik; Greg Ward; Karol Myszkowski (2010). High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann. p. 82. ISBN   9780080957111.
  5. McKesson, Jason L. "Chapter 12. Dynamic Range – Linearity and Gamma". Learning Modern 3D Graphics Programming. Archived from the original on 18 July 2013. Retrieved 11 July 2013.
  6. R.W.G. Hunt, The Reproduction of Colour, 6th Ed, p48
  7. Kodak, "Basic sensitometry and characteristics of film" : "A characteristic curve is like a film’s fingerprint."
  8. 1 2 "Kodak Professional Tri-X 320 and 400 Films" (PDF). Eastman Kodak Company. May 2007.
  9. "KODAK PROFESSIONAL PORTRA 160 Film" (PDF). imaging.kodakalaris.com. kodak. Retrieved 29 January 2019.
  10. "KODACHROME 25, 64, and 200 Professional Film" (PDF). wwwuk.kodak.com. Kodak. Retrieved 29 January 2019.
  11. Peter Hodges (2004). An introduction to video and audio measurement (3rd ed.). Elsevier. p. 174. ISBN   978-0-240-80621-1.
  12. Fritz Ebner and Mark D Fairchild, "Development and testing of a color space (IPT) with improved hue uniformity," Proceedings of IS&T/SID's Sixth Color Imaging Conference, p 8-13 (1998).
  13. SetDeviceGammaRamp, the Win32 API to download arbitrary gamma ramps to display hardware
  14. 1 2 Jonathan Sachs (2003). Color Management. Digital Light & Color. Archived 2008-07-04 at the Wayback Machine
  15. Koren, Norman. "Monitor calibration and gamma" . Retrieved 2018-12-10. The chart below enables you to set the black level (brightness) and estimate display gamma over a range of 1 to 3 with precison better than 0.1.
  16. Nienhuys, Han-Kwang (2008). "Gamma calibration" . Retrieved 2018-11-30. The reason for using 48% rather than 50% as a luminance is that many LCD screens have saturation issues in the last 5 percent of their brightness range that would distort the gamma measurement.
  17. Andrews, Peter. "The Monitor calibration and Gamma assessment page" . Retrieved 2018-11-30. the problem is caused by the risetime of most monitor hardware not being sufficiently fast to turn from full black to full white in the space of a single pixel, or even two, in some cases.
  18. "Get the best display on your monitor - Calibrate your display". Microsoft. Retrieved 2018-12-10. If you have a display calibration device and software, it's a good idea to use them instead of Display Color Calibration because they'll give you better calibration results.
  19. Werle, Eberhard. "Quickgamma" . Retrieved 2018-12-10. QuickGamma is a small utility program to calibrate a monitor on the fly without having to buy expensive hardware tools.
  20. Walters, Mike. "Monitor Calibration Wizard" . Retrieved 2018-12-10. Easy wizard for creating color profiles for you monitor.
  21. "About Color Management". Microsoft. Retrieved 2018-12-10. Usually Windows handles this on its own
  22. Engineering Guideline EG 28, "Annotated Glossary of Essential Terms for Electronic Production," SMPTE, 1993.

General information

Monitor gamma tools