The twisted nematic effect (TN-effect) was a major technological breakthrough that made the manufacture of large, thin liquid crystal displays practical and cost competitive. Unlike earlier flat-panel displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).
Many monochrome alphanumerical displays without picture information still use TN LCDs.
TN displays benefit from fast response times and less smearing than other LC display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Viewing the display from above whitens colors, and viewing the display from below dims colors.
The twisted nematic effect is based on the precisely controlled realignment of liquid crystal molecules between different ordered molecular configurations under the action of an applied electric field. This is achieved with little power consumption and at low operating voltages. The underlying phenomenon of alignment of liquid crystal molecules in applied field is called Fréedericksz transition and was discovered by Russian physicist Vsevolod Frederiks in 1927.
To display information with a twisted nematic liquid crystal, transparent electrodes are structured by photolithography to form a matrix or other pattern of electrodes, such as the seven-segment display used in low-information content applications like watches or calculators. Only one of the electrodes has to be patterned in this way, the other can remain continuous (common electrode). If more complex data or graphics information have to be displayed, a matrix arrangement of electrodes is used. Because of this, voltage-controlled addressing of matrix displays, such as in LCD-screens for computer monitors or flat television screens, is more complex than with segmented electrodes. For a matrix of limited resolution or for a slow-changing display on even a large matrix panel, a passive grid of electrodes is sufficient to implement passive matrix-addressing, provided that there are independent electronic drivers for each row and column. A high-resolution matrix LCD with required fast response (e.g. for animated graphics and/or video) necessitates integration of additional non-linear electronic elements into each picture element (pixel) of the display (e.g., thin-film diodes, TFDs, or thin-film transistors, TFTs) in order to allow active matrix-addressing of individual picture elements without crosstalk (unintended activation of non-addressed pixels).
The following illustrations show the OFF and ON states of a single pixel (which could instead be a segment of a character) of a twisted nematic light modulator liquid crystal display operating in the "normally white" mode, i.e., a mode in which light is transmitted when no electrical field is applied to the liquid crystal:
In the OFF state, i.e., when no electrical field is applied, the nematic liquid crystal molecules form a twisted configuration (aka helical structure or helix) between the two glass plates, G in the figure, which are separated by several spacers and coated with transparent electrodes, E1 and E2. The electrodes themselves are coated with alignment layers (not shown) that precisely twist the liquid crystal by 90° when no external field is present. Incoming light is first polarized by the first polarizer, P2. The helical configuration of the liquid crystal rotates the light's polarization by 90°, so the light will be properly polarized to pass through the second polarizer, P1, set at 90° to the first. Because the light passes through the cell, the pixel, I, appears transparent.
In the ON state, i.e., when a sufficient electrical field is applied between the two electrodes, the crystal molecules align in the direction of that field. Without the helical configuration of the liquid crystal to reorient the light's polarization angle, polarized light from polarizer P2 is instead blocked by polarizer P1, so the pixel, I, appears opaque.
Current is only needed to charge and discharge the capacitance of the corresponding LC cell, which happens only when the applied voltage changes. Current isn't needed to sustain the electric field, because no current (ideally) flows through the liquid crystal layer. Thus, LCDs require very little power.
However, the electric field's direction may need to be periodically reversed during the ON state by using an alternating voltage for "AC operation", because keeping the electric field in only one direction for too long during the ON state (or having a DC component as small as 50 mV in the AC voltage) may cause electrochemical reactions which reduce the cell's life. [1] [2]
The amount of opacity can be controlled by varying the voltage. Below a threshold voltage, which depends on the liquid crystal's mixture, no visual change occurs. At voltages near the threshold, only some crystals will realign, so the cell will be mostly transparent but just barely visible. As the voltage is increased, more crystals will realign until the cell reaches its maximum opacity. Already in 1972, mixtures were developed with a threshold voltage of only 0.9 V rms and which reached 90% of maximum opacity at 1.4 V rms. [3]
In 1962, Richard Williams, a physical chemist working at RCA Laboratories, started seeking new physical phenomena that might yield a display technology without vacuum tubes. Aware of the long line of research involving nematic liquid crystals, he started experimenting with the compound p-azoxyanisole which has a melting point of 115 °C (239 °F). Williams set up his experiments on a heated microscope stage, placing samples between transparent tin-oxide electrodes on glass plates held at 125 °C (257 °F). He discovered that a very strong electrical field applied across the stack would cause striped patterns to form. These were later termed "Williams domains". [4] The required field was about 1,000 volts per centimeter, far too high for a practical device. Realizing that development would be lengthy, he turned the research over to physicist George Heilmeier and moved on to other work.
In 1964, RCA's George H. Heilmeier along with Louis Zanoni and chemist Lucian Barton discovered that certain liquid crystals could be switched between a transparent state and a highly scattering opaque one with the application of electric current. The scattering was primarily forward, into the crystal, as opposed to backscattering towards the light source. By placing a reflector on the far side of the crystal, the incident light could be turned on or off electrically, creating what Heilmeier dubbed dynamic scattering. In 1965 Joseph Castellano and Joel Goldmacher, organic chemists, sought crystals that remained in the fluid state at room temperature. Within six months they had found a number of candidates, and with further development, RCA was able to announce the first liquid crystal displays in 1968. [4]
Although successful, the dynamic scattering display required constant current flow through the device, as well as relatively high voltages. This made them unattractive for low-power situations, where many of these sorts of displays were being used. Not being self-lit, LCDs also required external lighting if they were going to be used in low-light situations, which made existing display technologies even more unattractive in overall power terms. A further limitation was the requirement for a mirror, which limited the viewing angles. The RCA team was aware of these limitations, and continued development of a variety of technologies.
One of these potential effects had been discovered by Heilmeier in 1964. He was able to get organic dyes to attach themselves to the liquid crystals, and they would stay in position when pulled into alignment by an external field. When switched from one alignment to the other, the dye was either visible or hidden, resulting in two colored states called the guest-host effect. Work on this approach stopped when the dynamic scattering effect had been demonstrated successfully. [4]
Another potential approach was the twisted-nematic approach, which had first been noticed by French physicist Charles-Victor Mauguin in 1911. Mauguin was experimenting with a variety of semi-solid liquid crystals when he noted that he could align the crystals by pulling a piece of paper across them, causing the crystals to become polarized. He later noticed when he sandwiched the crystal between two aligned polarizers, he could twist them in relation to each other, but the light continued to be transmitted. This was not expected. Normally if two polarizers are aligned at right angles, light will not flow through them. Mauguin concluded that the light was being re-polarized by the twisting of the crystal itself. [4]
Wolfgang Helfrich, a physicist who joined RCA in 1967, became interested in Mauguin's twisted structure and thought it might be used to create an electronic display. However RCA showed little interest because they felt that any effect that used two polarizers would also have a large amount of light absorption, requiring it to be brightly lit. In 1970, Helfrich left RCA and joined the Central Research Laboratories of Hoffmann-LaRoche in Switzerland, where he teamed up with Martin Schadt, a solid-state physicist. Schadt built a sample with electrodes and a twisted version of a liquid-crystal material called PEBAB (p-ethoxybenzylidene-p'-aminobenzonitrile), which Helfrich had reported in prior studies at RCA, as part of their guest-host experiments. [4] When voltage is applied, PEBAB aligns itself along the field, breaking the twisting structure and the redirection of the polarization, making the cell turn opaque.
At this time Brown, Boveri & Cie (BBC) was also working with the devices as part of a prior joint medical research agreement with Hoffmann-LaRoche. [5] BBC demonstrated their work to a physicist from the US who was associated with James Fergason, an expert in liquid crystals at the Westinghouse Research Laboratories. Fergason was working on the TN-effect for displays, having formed ILIXCO to commercialize developments of the research being carried out in conjunction with Sardari Arora and Alfred Saupe at Kent State University's Liquid Crystal Institute. [6]
When news of the demonstration reached Hoffmann-LaRoche, Helfrich and Schadt immediately pushed for a patent, which was filed on 4 December 1970. Their formal results were published in Applied Physics Letters on 15 February 1971. In order to demonstrate the feasibility of the new effect for displays, Schadt fabricated a 4-digit display panel in 1972. [4]
Fergason published a similar patent in the US on either 9 February 1971 [4] or 22 April 1971. [6] This was two months after the Swiss patent was filed and set the stage for a three-year legal confrontation that was settled out of court. In the end, all the parties received a share of what would become many millions of dollars in royalties.
PEBAB was subject to breakdown when exposed to water or alkalines, and required special manufacturing to avoid contamination. In 1972 a team led by George W. Gray developed a new type of cyanobiphenyls that could be mixed with PEBAB to produce less reactive materials. [7] These additives also made the resulting liquid less viscous, thereby providing faster response times, while at the same time making them more transparent, which produced a pure-white color display.
This work, in turn, led to the discovery of an entirely different class of nematic crystals by Ludwig Pohl, Rudolf Eidenschink and their colleagues at Merck KGaA in Darmstadt, called cyanophenylcyclohexanes. They quickly became the basis of almost all LCDs, and remain a major part of Merck's business today. [8]
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers to display information. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome.
Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in a solid. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. An LC material may not always be in an LC state of matter.
A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is made by thin film deposition. TFTs are grown on a supporting substrate, such as glass. This differs from the conventional bulk metal-oxide-semiconductor field-effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer. The traditional application of TFTs is in TFT liquid-crystal displays.
A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.
An LCD projector is a type of video projector for displaying video, images or computer data on a screen or other flat surface. It is a modern equivalent of the slide projector or overhead projector. To display images, LCD projectors typically send light from a metal-halide lamp through a prism or series of dichroic filters that separates light to three polysilicon panels – one each for the red, green and blue components of the video signal. As polarized light passes through the panels, individual pixels can be opened to allow light to pass or closed to block the light. The combination of open and closed pixels can produce a wide range of colors and shades in the projected image.
A thin-film-transistor liquid-crystal display is a type of liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.
A STNdisplay is a type of liquid-crystal display (LCD). An LCD is a flat-panel display that uses liquid crystals to change its properties when exposed to an electric field, which can be used to create images. This change is called the twisted nematic (TN) field effect. Earlier TN displays twisted the liquid crystal molecules at a 90-degree angle. STN displays improved on that by twisting the liquid crystal molecules at a much greater angle, typically between 180 and 270 degrees. This allows for a sharper image and passive matrix addressing, a simpler way to control the pixels in an LCD.
James Lee Fergason was an American inventor and business entrepreneur. A member of the National Inventors Hall of Fame, Fergason is best known for his work on an improved Liquid Crystal Display, or LCD. He held over one hundred U.S. patents at the time of his death.
George Heilmeier proposed the dynamic scattering effect which causes a strong scattering of light when the electric field applied to a special liquid crystal mixture exceeds a threshold value.
Martin Schadt is a Swiss physicist and inventor.
Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field-emission display (FED) are in development to supersede earlier flat-screen technologies in picture quality.
A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.
There are various classifications of the electro-optical modes of liquid crystal displays (LCDs).
Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.
IPS is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, while remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.
A see-through display or transparent display is an electronic display that allows the user to see what is shown on the screen while still being able to see through it. The main applications of this type of display are in head-up displays, augmented reality systems, digital signage, and general large-scale spatial light modulation. They should be distinguished from image-combination systems which achieve visually similar effects by optically combining multiple images in the field of view. Transparent displays embed the active matrix of the display in the field of view, which generally allows them to be more compact than combination-based systems.
Wolfgang Helfrich is a German physicist and inventor who made contributions to twisted-nematic liquid crystal technology, which is used to produce a variety of modern LCD electronic displays.
Guest Host Displays, Dichroic Displays, Polymer Dispersed Displays
Peter J. Wild is a Swiss electronics engineer and a pioneer of liquid-crystal display (LCD) technology.
A segmented liquid-crystal display is a type of liquid-crystal display commonly used for showing numerical or limited character information, primarily in devices like calculators and digital watches.