Seven-segment display

Last updated

A typical 7-segment LED display component, with decimal point in a wide DIP-10 package Seven segment 01 Pengo.jpg
A typical 7-segment LED display component, with decimal point in a wide DIP-10 package

A seven-segment display is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot matrix displays.

Contents

Seven-segment displays are widely used in digital clocks, electronic meters, basic calculators, and other electronic devices that display numerical information. [1]

History

Seven-segment representation of figures can be found in patents as early as 1903 (in U.S. patent 1,126,641 ), when Carl Kinsley invented a method of telegraphically transmitting letters and numbers and having them printed on tape in a segmented format. In 1908, F. W. Wood invented an 8-segment display, which displayed the number 4 using a diagonal bar ( U.S. patent 974,943 ). In 1910, a seven-segment display illuminated by incandescent bulbs was used on a power-plant boiler room signal panel. [2] They were also used to show the dialed telephone number to operators during the transition from manual to automatic telephone dialing. [3] They did not achieve widespread use until the advent of LEDs in the 1970s.

Filament seven-segment display Incandescent light seven-segment display prPNrdeg17.jpg
Filament seven-segment display

Some early seven-segment displays used incandescent filaments in an evacuated bulb; they are also known as numitrons. [4] A variation (minitrons) made use of an evacuated potted box. Minitrons are filament segment displays that are housed in DIP (dual in-line package) packages like modern LED segment displays. They may have up to 16 segments. [5] [6] [7] There were also segment displays that used small incandescent light bulbs instead of LEDs or incandescent filaments. These worked similarly to modern LED segment displays. [8]

Vacuum fluorescent display versions were also used in the 1970s. [9]

Many early (c. 1970s) LED seven-segment displays had each digit built on a single die. This made the digits very small. Some included magnifying lenses in the design to try to make the digits more legible. [10] [11] Other designs used 1 or 2 dies for every segment of the display. [12] [13]

The seven-segment pattern is sometimes used in posters or tags, where the user either applies color to pre-printed segments, or applies color through a seven-segment digit template, to compose figures such as product prices or telephone numbers.

For many applications, dot-matrix liquid-crystal displays (LCDs) have largely superseded LED displays in general, though even in LCDs, seven-segment displays are common. Unlike LEDs, the shapes of elements in an LCD panel are arbitrary since they are formed on the display by photolithography. In contrast, the shapes of LED segments tend to be simple rectangles, because they have to be physically moulded to shape, which makes it difficult to form more complex shapes than the segments of seven-segment displays. However, the easy recognition of seven-segment displays, and the comparatively high visual contrast obtained by such displays relative to dot-matrix digits, makes seven-segment multiple-digit LCD screens very common on basic calculators.

The seven-segment display has inspired type designers to produce typefaces reminiscent of that display (but more legible), such as New Alphabet, "DB LCD Temp", "ION B", etc.

Using a restricted range of letters that look like (upside-down) digits, seven-segment displays are commonly used by school children to form words and phrases using a technique known as "calculator spelling".

Implementations

A vane display at a gas station Fuel prices.jpg
A vane display at a gas station
A multiplexed 4-digit, seven-segment display with only 12 pins LED Digital Display.jpg
A multiplexed 4-digit, seven-segment display with only 12 pins
A 4-digit display scanning by columns to make the number 1.234 7segment multiplexing.gif
A 4-digit display scanning by columns to make the number 1.234
X-Ray of an 8-digit 7-segment multiplexed LED display from a 1970s calculator 8-digit-multiplex-7-segment-LED-X-Ray.tif
X-Ray of an 8-digit 7-segment multiplexed LED display from a 1970s calculator

Seven-segment displays may use a liquid crystal display (LCD), a light-emitting diode (LED) for each segment, an electrochromic display, or other light-generating or controlling techniques such as cold cathode gas discharge (Panaplex), vacuum fluorescent (VFD), incandescent filaments (Numitron), and others. For gasoline price totems and other large signs, vane displays made up of electromagnetically flipped light-reflecting segments (or "vanes") are still commonly used. A precursor to the 7-segment display in the 1950s through the 1970s was the cold-cathode, neon-lamp-like nixie tube. Starting in 1970, RCA sold a display device known as the Numitron that used incandescent filaments arranged into a seven-segment display. [14] In USSR, the first electronic calculator "Vega", which was produced from 1964, contains 20 decimal digits with seven-segment electroluminescent display. [15]

In a simple LED package, typically all of the cathodes (negative terminals) or all of the anodes (positive terminals) of the segment LEDs are connected and brought out to a common pin; this is referred to as a "common cathode" or "common anode" device. [16] Hence a 7 segment plus decimal point package will only require nine pins, though commercial products typically contain more pins, and/or spaces where pins would go, in order to match standard IC sockets. Integrated displays also exist, with single or multiple digits. Some of these integrated displays incorporate their own internal decoder, though most do not: each individual LED is brought out to a connecting pin as described.

Multiple-digit LED displays as used in pocket calculators and similar devices used multiplexed displays to reduce the number of I/O pins required to control the display. For example, all the anodes of the A segments of each digit position would be connected together and to a driver circuit pin, while the cathodes of all segments for each digit would be connected. To operate any particular segment of any digit, the controlling integrated circuit would turn on the cathode driver for the selected digit, and the anode drivers for the desired segments; then after a short blanking interval the next digit would be selected and new segments lit, in a sequential fashion. In this manner an eight digit display with seven segments and a decimal point would require only 8 cathode drivers and 8 anode drivers, instead of sixty-four drivers and IC pins. [17] Often in pocket calculators the digit drive lines would be used to scan the keyboard as well, providing further savings; however, pressing multiple keys at once would produce odd results on the multiplexed display.

Although to a naked eye all digits of an LED display appear lit, only one digit is lit at any given time in a multiplexed display. The digit changes at a high enough rate that the human eye cannot see the flashing (on earlier devices it could be visible to peripheral vision).

Characters

Segment names of a seven-segment display with an eighth Decimal Point segment. 7 Segment Display with Labeled Segments.svg
Segment names of a seven-segment display with an eighth Decimal Point segment.

The seven segments are arranged as a rectangle, with two vertical segments on each side and one horizontal segment each at the top, middle, and bottom. Often the rectangle is oblique (slanted), which may aid readability. In most applications, the segments are of nearly uniform shape and size (usually elongated hexagons, though trapezoids and rectangles can also be used); though in the case of adding machines, the vertical segments are longer and more oddly shaped at the ends, to try to make them more easily readable. The seven elements of the display can be lit in different combinations to represent each of the Arabic numerals.

The individual segments are referred to by the letters "a" to "g", and an optional decimal point (an "eighth segment", referred to as DP) is sometimes used for the display of non-integer numbers. [18] [16] A single byte can encode the full state of a seven-segment display, including the decimal point. The most popular bit encodings are gfedcba and abcdefg. In the gfedcba representation, a byte value of 0x06 would turn on segments "c" and "b", which would display a "1".

16x8 grid showing the 128 states of a seven-segment display 7-segment.svg
16×8 grid showing the 128 states of a seven-segment display

Decimal

The numerical digits 0 to 9 are the most common characters displayed on seven-segment displays. The most common patterns used for each of these are: [20]

7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg

Alternative patterns: The numeral 1 may be represented with the left segments, the numerals 6 and 9 may be represented without a "tail", and the numeral 7 represented with a 'tail': [21]

7-segment ef.svg 7-segment cdefg.svg 7-segment abcf.svg 7-segment abcfg.svg

In Unicode 13.0, 10 codepoints had been given for segmented digits 0–9 in the Symbols for Legacy Computing block, to replicate early computer fonts that included seven-segment versions of the digits. [22] The official reference shows the less-common four-segment "7". The characters as displayed by your browser:

0123456789
U+1FBFx🯰🯱🯲🯳🯴🯵🯶🯷🯸🯹

Hexadecimal

Four binary bits are needed to specify the numbers 0–9, but can also specify 10–15, so usually decoders with 4 bit inputs can also display hexadecimal (hex) digits. Today, a combination of uppercase and lowercase letters is commonly used for A–F; [23] this is done to obtain a unique, unambiguous shape for each hexadecimal digit (otherwise, a capital "D" would look identical to a '0' and a capital 'B' would look identical to an '8'). [24] [25] [26] [27] Also the digit '6' must be displayed with the top bar lit to avoid ambiguity with the letter 'b'.

7-segment abcefg.svg 7-segment cdefg.svg 7-segment adef.svg 7-segment bcdeg.svg 7-segment adefg.svg 7-segment aefg.svg

Letters

Most letters of the Latin alphabet can be reasonably implemented using seven segments. Though not every letter is available, it is possible to create many useful words. By careful choice of words, one can sometimes work around many shortcomings of seven-segment alphabet encodings.

Latin alphabet
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Upper 7-segment abcefg.svg 7-segment adef.svg 7-segment adefg.svg 7-segment aefg.svg 7-segment acdef.svg 7-segment bcefg.svg 7-segment bc.svg 7-segment bcde.svg 7-segment def.svg 7-segment abcdef.svg 7-segment abefg.svg 7-segment acdfg.svg 7-segment aef.svg 7-segment bcdef.svg 7-segment abdeg.svg
Lower 7-segment abcdeg.svg 7-segment cdefg.svg 7-segment deg.svg 7-segment bcdeg.svg 7-segment abdefg.svg 7-segment abcdfg.svg 7-segment cefg.svg 7-segment c.svg 7-segment bcd.svg 7-segment ef.svg 7-segment ceg.svg 7-segment cdeg.svg 7-segment abcfg.svg 7-segment eg.svg 7-segment defg.svg 7-segment cde.svg 7-segment bcdfg.svg
  Ambiguous with a digit. Upper case I could be put on the left (as lower-case L is shown here) but this is not often done. Lowercase 'b' and 'q' are identical to the alternate numerical digits '6' and '9'.

Short messages giving status information (e.g. " 7-segment ceg.svg 7-segment cdeg.svg 7-segment none.svg 7-segment bcdeg.svg 7-segment bc.svg 7-segment acdfg.svg 7-segment adef.svg " on a CD player) are also commonly represented on seven-segment displays. In the case of such messages it is not necessary for every letter to be unambiguous, merely for the words as a whole to be readable.

Examples:

7-segment abcdef.svg 7-segment abefg.svg 7-segment adefg.svg 7-segment ceg.svg , 7-segment adef.svg 7-segment def.svg 7-segment abcdef.svg 7-segment acdfg.svg 7-segment adefg.svg , 7-segment abefg.svg 7-segment def.svg 7-segment abcefg.svg 7-segment bcdfg.svg , 7-segment abefg.svg 7-segment abcefg.svg 7-segment bcdef.svg 7-segment acdfg.svg 7-segment adefg.svg , 7-segment acdfg.svg 7-segment bcefg.svg 7-segment bcdef.svg 7-segment aefg.svg 7-segment aefg.svg 7-segment def.svg 7-segment adefg.svg , 7-segment ceg.svg 7-segment cdeg.svg 7-segment bcdeg.svg 7-segment bc.svg 7-segment acdfg.svg 7-segment adef.svg
7-segment acdfg.svg 7-segment defg.svg 7-segment abcefg.svg 7-segment eg.svg 7-segment defg.svg , 7-segment acdfg.svg 7-segment defg.svg 7-segment cdeg.svg 7-segment abefg.svg , 7-segment eg.svg 7-segment cde.svg 7-segment ceg.svg , 7-segment aefg.svg 7-segment abcefg.svg 7-segment bc.svg 7-segment def.svg , 7-segment adefg.svg 7-segment eg.svg 7-segment eg.svg 7-segment cdeg.svg 7-segment eg.svg , 7-segment acdfg.svg 7-segment adefg.svg 7-segment defg.svg 7-segment bcdef.svg 7-segment abefg.svg , 7-segment bcefg.svg 7-segment adefg.svg 7-segment def.svg 7-segment abefg.svg
7-segment cdeg.svg 7-segment ceg.svg , 7-segment abcdef.svg 7-segment aefg.svg 7-segment aefg.svg , 7-segment bcdfg.svg 7-segment adefg.svg 7-segment acdfg.svg , 7-segment ceg.svg 7-segment cdeg.svg , 7-segment bcefg.svg 7-segment cdeg.svg 7-segment defg.svg , 7-segment adef.svg 7-segment cdeg.svg 7-segment def.svg 7-segment bcdeg.svg

Seven-segment displays have also been used to show letters of the Cyrillic and Greek alphabets:

Cyrillic alphabet
АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ
Upper 7-segment abcefg.svg 7-segment acdefg.svg 7-segment abcdefg.svg 7-segment aef.svg 7-segment adefg.svg 7-segment abcdg.svg 7-segment bcefg.svg 7-segment abcdef.svg 7-segment abcef.svg 7-segment abefg.svg 7-segment adef.svg 7-segment bcdfg.svg 7-segment bcfg.svg 7-segment cdefg.svg 7-segment ef.svg 7-segment cdefg.svg 7-segment abcdg.svg
Lower 7-segment eg.svg 7-segment abcdeg.svg 7-segment cde.svg 7-segment acde.svg 7-segment cdeg.svg 7-segment ceg.svg 7-segment deg.svg
  Ambiguous with a digit.
Greek alphabet
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
Upper 7-segment abcefg.svg 7-segment abcdefg.svg 7-segment aef.svg 7-segment adefg.svg 7-segment abdeg.svg 7-segment bcefg.svg 7-segment abcdefg.svg 7-segment bc.svg 7-segment adg.svg 7-segment abcdef.svg 7-segment abcef.svg 7-segment abefg.svg 7-segment adef.svg 7-segment bcfg.svg 7-segment abdfg.svg
Lower 7-segment acdefg.svg 7-segment de.svg 7-segment abceg.svg 7-segment befg.svg 7-segment cdeg.svg 7-segment ceg.svg 7-segment cg.svg 7-segment cde.svg
  Ambiguous with a digit.

There are enough patterns to show all the letters but few representations are unambiguous and intuitive at the same time. [28] When all letters need to be displayed on a device, sixteen-segment and dot matrix displays are better choices than seven-segment displays.

Punctuation

Seven segments are capable of displaying some punctuation glyph characters.

Punctuation encodings
GlyphDisplay Unicode Meaning
7-segment none.svg 0x0020 Space
_ 7-segment d.svg 0x005F Underscore
- 7-segment g.svg 0x002D Minus, Negative, Hyphen, Dash
7-segment a.svg 0x203E Overscore, Macron
= 7-segment dg.svg 0x003D Equals
= 7-segment ag.svg 0x207C Superscript equals
7-segment adg.svg 0x2261 Triple bar, Identical to, Hamburger button
° 7-segment abfg.svg 0x00B0 Degree
" 7-segment bf.svg 0x0022 Double quote, Double prime
' 7-segment f.svg 0x0027 Apostrophe, Single quote, Prime
( or [ 7-segment adef.svg 0x005B Parenthesis, Bracket (conflicts with uppercase C)
) or ] 7-segment abcd.svg 0x005DParenthesis, Bracket
< 7-segment afg.svg 0x003C Less than
> 7-segment abg.svg 0x003E Greater than
 ? 7-segment abeg.svg 0x003F Question mark

The decimal point can be used to add a period after a letter.

Decoder ICs

In the past, some seven-segment decoder ICs did not output the following modern decimal/hexadecimal font.

7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment abcefg.svg 7-segment cdefg.svg 7-segment adef.svg 7-segment bcdeg.svg 7-segment adefg.svg 7-segment aefg.svg
  • BCD decoder ICs support various seven-segment fonts for their decoded output of "A" (10) to "F" (15) inputs.
  • The 7446/7447/7448/7449 [31] and the Siemens FLH551-7448/555-8448 chips used truncated versions of "2", "3", "4", "5" and "6" for digits A–E. Digit F (1111 binary) was blank. [32] [33]
  • The TC5002B and TC5022B repeat the numbers 0 to 5 for digits A–F. [30]
  • The MM74C912 displayed "o" for A and B, "−" for C, D and E, and blank for F. [34] The CD4511B just displayed blanks. [35]
  • Soviet programmable calculators like the Б3–34 used the symbols "−", "L", "C", "Г", "E", and " " (space), allowing the error message EГГ0Г to be displayed.
ManufacturerPart NumberProductionDescription 0 12345678 9 A BCDE F OutputDatasheet
TI SN74LS47 Active (TI) BCD Decoder 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment cdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcfg.svg 7-segment deg.svg 7-segment cdg.svg 7-segment bfg.svg 7-segment adfg.svg 7-segment defg.svg 7-segment none.svg Active-Low, OC [31]
TISN74LS247 Active (TI) BCD Decoder 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment deg.svg 7-segment cdg.svg 7-segment bfg.svg 7-segment adfg.svg 7-segment defg.svg 7-segment none.svg Active-Low, OC [36]
MotorolaMC14558BDiscontinuedBCD Decoder 7-segment abcdef.svg 7-segment ef.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment cdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcfg.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg Active-High, PP [29]
Toshiba TC5002BDiscontinuedBCD Decoder 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment cdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcfg.svg 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg Active-High, OE [30]
ToshibaTC5022BDiscontinuedBCD Decoder 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abcf.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg Active-High, OE [30]
RCA
TI
CD4511B
CD74x4511
Active (TI) BCD Decoder, Latch 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment cdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcfg.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg Active-High [35] [37]
RCA
TI
CD4543B
CD74x4543
Active (TI) BCD Decoder, Latch 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg 7-segment none.svg Active-High or Low [38] [39]
NationalDM9374DiscontinuedBCD Decoder, Latch 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment g.svg 7-segment adefg.svg 7-segment bcefg.svg 7-segment def.svg 7-segment abefg.svg 7-segment none.svg Active Low, 15mA CC [40]
NationalDM9368Discontinued Hex Decoder, Latch 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment abcefg.svg 7-segment cdefg.svg 7-segment adef.svg 7-segment bcdeg.svg 7-segment adefg.svg 7-segment aefg.svg Active High, 25mA CC [41]
NationalDM9370DiscontinuedHex Decoder, Latch 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment abcefg.svg 7-segment cdefg.svg 7-segment adef.svg 7-segment bcdeg.svg 7-segment adefg.svg 7-segment aefg.svg Active Low, OC [42]
Motorola MC14495-1DiscontinuedHex Decoder, Latch 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment abcefg.svg 7-segment cdefg.svg 7-segment adef.svg 7-segment bcdeg.svg 7-segment adefg.svg 7-segment aefg.svg Active-High, 290Ω [43]
National MM74C912Discontinued6-Digit BCD Controller 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment cdeg.svg 7-segment abfg.svg 7-segment a.svg 7-segment g.svg 7-segment d.svg 7-segment none.svg Active-High, PP [34]
NationalMM74C917Discontinued6-Digit Hex Controller 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg 7-segment abcefg.svg 7-segment cdefg.svg 7-segment adef.svg 7-segment bcdeg.svg 7-segment adefg.svg 7-segment aefg.svg Active-High, PP [34]
RCA CD4026B Active (TI) BCD Counter, Up 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg Active-High, PP [44]
RCACD4033B Active (TI) BCD Counter, Up 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg Active-High, PP [44]
RCACD40110B Active (TI) BCD Counter, Up/Down 7-segment abcdef.svg 7-segment bc.svg 7-segment abdeg.svg 7-segment abcdg.svg 7-segment bcfg.svg 7-segment acdfg.svg 7-segment acdefg.svg 7-segment abc.svg 7-segment abcdefg.svg 7-segment abcdfg.svg Active-High, PP [45]
Table notes

See also

7-, 9-, 14-, and 16-segment displays shown side by side Common segment displays.svg
7-, 9-, 14-, and 16-segment displays shown side by side

There are also fourteen- and sixteen-segment displays (for full alphanumerics); however, these have mostly been replaced by dot matrix displays. 22-segment displays capable of displaying the full ASCII character set [46] were briefly available in the early 1980s but did not prove popular.

Related Research Articles

<span class="mw-page-title-main">Calculator</span> Electronic device used for calculations

An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics.

<span class="mw-page-title-main">Nixie tube</span> Electronic numeric display device

A Nixie tube, or cold cathode display, is an electronic device used for displaying numerals or other information using glow discharge.

<span class="mw-page-title-main">Sumlock ANITA calculator</span>

The ANITA Mark VII and ANITA Mark VIII calculators were launched simultaneously in late 1961 as the world's first all-electronic desktop calculators. Designed and built by the Bell Punch Co. in Britain, and marketed through its Sumlock Comptometer division, they used vacuum tubes and cold-cathode switching tubes in their logic circuits and nixie tubes for their numerical displays.

<span class="mw-page-title-main">Neon lamp</span> Light source based on gas discharge

A neon lamp is a miniature gas-discharge lamp. The lamp typically consists of a small glass capsule that contains a mixture of neon and other gases at a low pressure and two electrodes. When sufficient voltage is applied and sufficient current is supplied between the electrodes, the lamp produces an orange glow discharge. The glowing portion in the lamp is a thin region near the cathode; the larger and much longer neon signs are also glow discharges, but they use the positive column which is not present in the ordinary neon lamp. Neon glow lamps were widely used as indicator lamps in the displays of electronic instruments and appliances. They are still sometimes used for their electrical simplicity in high-voltage circuits.

<span class="mw-page-title-main">7400-series integrated circuits</span> Series of transistor–transistor logic integrated circuits

The 7400 series is a popular logic family of transistor–transistor logic (TTL) integrated circuits (ICs).

<span class="mw-page-title-main">Display device</span> Output device for presentation of information in visual form

A display device is an output device for presentation of information in visual or tactile form. When the input information that is supplied has an electrical signal the display is called an electronic display.

<span class="mw-page-title-main">555 timer IC</span> Integrated circuit used for timer applications

The 555 timer IC is an integrated circuit used in a variety of timer, delay, pulse generation, and oscillator applications. It is one of the most popular timing ICs due to its flexibility and price. Derivatives provide two or four timing circuits in one package. The design was first marketed in 1972 by Signetics and used bipolar junction transistors. Since then, numerous companies have made the original timers and later similar low-power CMOS timers. In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".

<span class="mw-page-title-main">Vacuum fluorescent display</span> Display used in consumer electronics

A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens.

4-bit computing is the use of computer architectures in which integers and other data units are 4 bits wide. 4-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. A group of four bits is also called a nibble and has 24 = 16 possible values.

A fourteen-segment display (FSD) is a type of display based on 14 segments that can be turned on or off to produce letters and numerals. It is an expansion of the more common seven-segment display, having an additional four diagonal and two vertical segments with the middle horizontal segment broken in half. A seven-segment display suffices for numerals and certain letters, but unambiguously rendering the ISO basic Latin alphabet requires more detail. A slight variation is the sixteen-segment display which allows additional legibility in displaying letters or other symbols.

<span class="mw-page-title-main">Sixteen-segment display</span> Display made up of 16 segments used for displaying latin letters or numbers

A sixteen-segment display (SISD) is a type of display based on sixteen segments that can be turned on or off to produce a graphic pattern. It is an extension of the more common seven-segment display, adding four diagonal and two vertical segments and splitting the three horizontal segments in half. Other variants include the fourteen-segment display which does not split the top or bottom horizontal segments, and the twenty-two-segment display that allows lower-case characters with descenders.

<span class="mw-page-title-main">Dot-matrix display</span> Type of display device

A dot-matrix display is a low-cost electronic digital display device that displays information on machines such as clocks, watches, calculators, and many other devices requiring a simple alphanumeric display device of limited resolution.

<span class="mw-page-title-main">Charlieplexing</span> Technique for driving a multiplexed display

Charlieplexing is a technique for accessing a large number of LEDs, switches, micro-capacitors or other I/O entities, using very few tri-state logic wires from a microcontroller, these entities being wired as discrete components, x/y arrays, or woven in a diagonally intersecting pattern to form diagonal arrays.

<span class="mw-page-title-main">Dekatron</span> Early and obsolete type of computer memory

In electronics, a Dekatron is a gas-filled decade counting tube. Dekatrons were used in computers, calculators, and other counting-related products during the 1950s and 1960s. "Dekatron" was the brand name used by Ericsson Telephones Limited (ETL), of Beeston, Nottingham and has since become a generic trademark. The device was invented by John Reginald Acton, with the patent assigned to Ericsson.

<span class="mw-page-title-main">Seven-segment display character representations</span>

The various shapes of numerical digits, letters, and punctuation on seven-segment displays is not standardized by any relevant entity. Unicode provides encoding codepoint for segmented digits in Unicode 13.0 in Symbols for Legacy Computing block.

Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.

A text display is an electronic alphanumeric display device that is mainly or only capable of showing text, or extremely limited graphic characters. This includes electromechanical split-flap displays, vane displays, and flip-disc displays; all-electronic liquid-crystal displays, incandescent eggcrate displays, LED displays, and vacuum fluorescent displays; and even electric nixie tubes.

<span class="mw-page-title-main">ULN2003A</span> IC for low-to-high power load switching

The ULN2003A is an integrated circuit produced by Texas Instruments. It consists of an array of seven NPN Darlington transistors capable of 500 mA, 50 V output. It features common-cathode flyback diodes for switching inductive loads. It can come in PDIP, SOIC, SOP or TSSOP packaging. In the same family are ULN2002A, ULN2004A, as well as ULQ2003A and ULQ2004A, designed for different logic input levels.

<span class="mw-page-title-main">TL431</span> Linear integrated circuit precision shunt regulator

The TL431 integrated circuit (IC) is a three-terminal adjustable precise shunt voltage regulator. With the use of an external voltage divider, a TL431 can regulate voltages ranging from 2.495 to 36 V, at currents up 100 mA. The typical initial deviation of reference voltage from the nominal 2.495 V level is measured in millivolts, the maximum worst-case deviation is measured in tens of millivolts. The circuit can control power transistors directly; combinations of the TL431 with power MOS transistors are used in high efficiency, very low dropout linear regulators. The TL431 is the de facto industry standard error amplifier circuit for switched-mode power supplies with optoelectronic coupling of the input and output networks.

References

  1. "Seven Segment Displays". Archived from the original on 2012-04-04.
  2. Rogers, Warren O. (1910-02-01). "Power Plant Signalling System". Power and the Engineer. 32 (5): 204–206. Archived from the original on 2014-03-31. Retrieved 2016-10-06.
  3. Clark, E. H. (December 1929). "Evolution of the Call-Indicator System" (PDF). Bell Laboratories Record. 8 (5): 171–173. Archived (PDF) from the original on 2024-04-13. Retrieved 2015-12-19.
  4. "IEE Apollo DA-2110 Numitron Tube (DA2110, RCA DR-2110) - Industrial Alchemy". www.industrialalchemy.org. Archived from the original on 2020-09-15. Retrieved 2020-04-15.
  5. "Wamco KW-105AL Alphanumeric Minitron Display - Industrial Alchemy". www.industrialalchemy.org. Archived from the original on 2020-09-15. Retrieved 2020-04-15.
  6. "Numitron Tube Tutorial". 2011-12-21. Archived from the original on 2018-09-25. Retrieved 2020-04-14.
  7. "Incandescent Displays – the Vintage Technology Association". Archived from the original on 2018-02-17. Retrieved 2020-04-14.
  8. "Alco MSM-5A Mosaic Indicator Incandescent Display - Industrial Alchemy". www.industrialalchemy.org. Archived from the original on 2020-09-15. Retrieved 2020-04-15.
  9. "General Electric Y1938 – the Vintage Technology Association". Archived from the original on 2016-06-11. Retrieved 2020-11-13.
  10. "Litronix Surface Mount Wristwatch LED Display – Industrial Alchemy". Archived from the original on 2018-08-31. Retrieved 2020-04-16.
  11. "Litronix DL330 Series LED Displays (Siemens DL340M) - Industrial Alchemy". Archived from the original on 2018-03-04. Retrieved 2020-04-16.
  12. "Soviet AL304V Surface Mount LED - Industrial Alchemy". Archived from the original on 2022-09-28. Retrieved 2024-01-21.
  13. "Texas Instruments TIA8447 LED Display - Industrial Alchemy". Archived from the original on 2022-05-29. Retrieved 2024-01-21.
  14. "Advert for RCA NUMITRON Display Devices". Electronic Design. 22 (12). Hayden: 163. 1974-06-07. Archived from the original on 2014-03-31. Retrieved 2012-06-22.
  15. "Museum of Soviet Calculators - VEGA". 2010-09-29. Archived from the original on 2010-09-29.
  16. 1 2 Elektrotechnik Tabellen Kommunikationselektronik (3rd ed.). Braunschweig, Germany: Westermann Verlag. 1999. p. 110. ISBN   3142250379.
  17. e.g. DCR 1050m Archived 31 March 2014 at the Wayback Machine
  18. "Seven Segment Displays". Archived from the original on 2012-01-05. Retrieved 2012-11-14.
  19. Diehl, H. P.; De Mulder, H. D. (April 1981). "junior cookbook: a few healthy recipes to keep your computer in shape" (PDF). elektor (UK) – up-to-date electronics for lab and leisure. Vol. 1981, no. 72. pp. 4-28 – 4-31 [4-30 Figure 4]. Archived (PDF) from the original on 2020-07-03. Retrieved 2020-07-03.
  20. Nührmann, Dieter (1981). Written at Achim, Bremen, Germany. Werkbuch Elektronik (in German) (3 ed.). Munich, Germany: Franzis-Verlag GmbH. p. 695. ISBN   3-7723-6543-4.
  21. For example the fx-50F calculator from Casio and other models from the same manufacturer.
  22. Official Unicode Consortium code chart Archived 2020-06-05 at the Wayback Machine (PDF)
  23. "Application Note 3210 – Quick-Start: Driving 7-Segment Displays with the MAX6954" (PDF) (Application note) (3 ed.). Maxim Integrated. March 2008 [2004-06-25]. Archived (PDF) from the original on 2017-03-20. Retrieved 2013-05-06.
  24. "Driving 7-Segment Displays". Maxim Integrated. 2004. Archived from the original on 2017-03-20. Retrieved 2017-03-20.
  25. electronic hexadecimal calculator/converter SR-22 (PDF) (Revision A ed.). Texas Instruments Incorporated. 1974. p. 7. 1304-389 Rev A. Archived (PDF) from the original on 2017-03-20. Retrieved 2017-03-20.
  26. electronic calculator – TI programmer (PDF). Texas Instruments Incorporated. 1977. p. 7. Archived (PDF) from the original on 2017-03-28. Retrieved 2017-03-28.
  27. electronic calculator – TI LCD programmer (PDF). Texas Instruments Incorporated. 1981. p. 8. Archived (PDF) from the original on 2017-03-28. Retrieved 2017-03-28.
  28. Downie, Neil A. (2003). Ink Sandwiches, Electric Worms and 37 Other Experiments for Saturday Science . Johns Hopkins University Press. p.  271.
  29. 1 2 "MC14558B Datasheet from CMOS Logic Databook". Motorola . 1988.
  30. 1 2 3 4 "TC5002B / TC5022B Datasheet from C2MOS Databook". Toshiba . 1985.
  31. 1 2 "SN74LS47 / SN74LS48 / SN74LS49 Datasheet". Texas Instruments . July 2021. Archived (PDF) from the original on 2021-08-01.
  32. Beuth, Klaus; Beuth, Annette (1990). Digitaltechnik (in German). Vol. 4 (7 ed.). Würzburg, Germany: Vogel Buchverlag  [ de ]. pp. 301–303. ISBN   3-8023-0584-1.{{cite book}}: |work= ignored (help)
  33. Datenblatt FLH551-7448, FLH555-8448, 74248 (in German). Siemens.
  34. 1 2 3 "MM74C912 / MM74C917 Datasheet from CMOS Logic Databook". National Semiconductor . 1988.
  35. 1 2 "CD4511B Datasheet". Texas Instruments . February 2021. Archived (PDF) from the original on 2021-08-01.
  36. "SN74LS247 / SN74LS248 Datasheet". Texas Instruments . July 2021. Archived (PDF) from the original on 2021-08-01.
  37. "CD74HC4511 Datasheet" (PDF). Texas Instruments . August 2022. Archived (PDF) from the original on 2023-09-06.
  38. "CD4543B Datasheet". Texas Instruments . July 2021. Archived (PDF) from the original on 2021-08-01.
  39. "CD74HC4543 Datasheet" (PDF). Texas Instruments . July 2003. Archived (PDF) from the original on 2023-09-06.
  40. "DM9374 Datasheet from LS/S/TTL Logic Databook". National Semiconductor . 1989.
  41. "DM9368 Datasheet from LS/S/TTL Logic Databook". National Semiconductor . 1989.
  42. "DM9370 Datasheet from LS/S/TTL Logic Databook". National Semiconductor . 1989.
  43. "MC14495-1 Datasheet from CMOS / NMOS Special Functions Databook". Motorola . 1988.
  44. 1 2 "CD4026B / CD4033B Datasheet". Texas Instruments . December 2020. Archived (PDF) from the original on 2021-08-01.
  45. "CD40110B Datasheet". Texas Instruments . March 2021. Archived (PDF) from the original on 2021-08-01.
  46. "DL-3422 4-digit 22-segment alphanumeric Intelligent Display preliminary data sheet". Internet Archive. Litronix 1982 Optoelectronics Catalog. p. 82. Retrieved 2016-09-03.