Flip-disc display

Last updated
Flip-disc display elements (close up). The disc rotates on the shaft that is carried in the two triangular posts. The magnet that powers the rotation can be seen embedded in the disc. Under the disc is the driving solenoid; when powered, a field is induced into the two posts, flipping the discs. Rotation stops when the disc hits the post. Bistabile anzeigeelemente.jpg
Flip-disc display elements (close up). The disc rotates on the shaft that is carried in the two triangular posts. The magnet that powers the rotation can be seen embedded in the disc. Under the disc is the driving solenoid; when powered, a field is induced into the two posts, flipping the discs. Rotation stops when the disc hits the post.
DOT-LED display of a bus Irisbus Citybus 18M (made 2004), photographed while a change is scrolling across the board Irisbus, informacni panel.jpg
DOT-LED display of a bus Irisbus Citybus 18M (made 2004), photographed while a change is scrolling across the board
Faulty dots are a typical malfunction of flip-disc displays. Horejsi nabrezi, zarizeni pro provozni informace, cas 20.06.jpg
Faulty dots are a typical malfunction of flip-disc displays.

The flip-disc display (or flip-dot display) is an electromechanical dot matrix display technology used for large outdoor signs, normally those that will be exposed to direct sunlight. Flip-disc technology has been used for external destination signs on buses and trains across North America, Europe and Australia, as well as for variable-message signs on highways. It has also been used extensively on public information displays. [1] A few game shows have also used flip-disc displays, including Canadian shows like Just Like Mom , The Joke's on Us and Uh Oh! , but most notably the American game show Family Feud from 1976 to 1995, and its British version Family Fortunes from 1980 to 2002. The Polish version of Family Feud, Familiada, still uses this board, which was bought from the Swedish version of the show. [2]

Contents

Design

The flip-disc display consists of a grid of small metal discs that are black on one side and a bright color on the other (typically white or day-glo yellow), set into a black background. With power applied, the disc flips to show the other side. Once flipped, the discs will remain in position without power.

The disc is attached to an axle which also carries a small permanent magnet. Positioned close to the magnet is a solenoid. By pulsing the solenoid coil with the appropriate electrical polarity, the permanent magnet on the axle will align itself with the magnetic field, also turning the disc. Another style uses a magnet embedded in the disc itself, with separate solenoids arranged at the ends or side to flip it.

A computerized driver system reads data, typically characters, and flips the appropriate discs to produce the desired display. Some displays use the other end of the solenoid to actuate a reed switch, which controls an LED array behind the disc, resulting in a display that is visible at night but requires no extra drive electronics.

Various driving schemes are in use. Their basic purpose is to reduce the amount of wiring and electronics needed to drive the solenoids. All common methods connect the solenoids in some sort of matrix. One driving method is similar to that of core memory: the solenoids are connected in a simple matrix. Those solenoids at the crossing point of two powered wires are driven with enough current to flip their discs; those powered on only the vertical or horizontal line see only half of the required force (as flux is proportional to current, which in turn is proportional to the voltage). Those on unpowered lines also do not flip.

Typically, the driving scheme works its way from top to bottom, powering each horizontal line "on" and then powering the needed vertical lines to set up that row. The whole process takes a few seconds, during which time the sound of the discs being flipped over is quite distinctive.

Other driving schemes use diodes to isolate non-driven solenoids, which allows only the discs whose state needs changing to be flipped. This uses less power and may be more robust.

History

The flip-disc display was developed by Kenyon Taylor at Ferranti-Packard at the request of Trans-Canada Air Lines (today's Air Canada). By the time the system had been patented in 1961, TCA had already lost interest and Ferranti's management didn't consider the project very interesting.

The first big opportunity for this system came in 1961 when the Montreal Stock Exchange decided to modernize its method of displaying trading information. [1] Ferranti-Packard and Westinghouse both bid on the project, Westinghouse using an electro-luminescent technology. Ferranti won the contract after demonstrating the system with a mock-up they built in a disused warehouse across the street from the exchange's new offices, using hand-painted dots moved by hand to show how the system would work. The dots were slowly replaced with operating modules as they became available. The $700,000 system (equivalent to $7,140,000in 2023) was beset by delays and technical problems, but once it became fully operational it was considered very reliable.

The systems were relatively expensive because of their manual construction, typically completed by women who "sewed" the displays in a fashion very similar to the construction of magnetic-core memory. Worse, Ferranti signed maintenance contracts that were, by 1971, losing $12,000 a month. [1] A re-organization of the engineering and maintenance department addressed the problems, and prices started to fall. By 1977 the system had won sales with half the world's major stock exchanges.

As prices fell, they were soon found in wider roles, notably that of highway signs and information systems for public transport. In Europe and in the United States, vane displays based on the same technology became popular for displaying prices at gasoline stations. In 1974 Ferranti started a project to build smaller versions for the front of buses and trains, and by 1977 revenue from these had already surpassed that from other lines of business. [1] The displays often required minor maintenance to free up "stuck" discs.

Alternative technologies

DOT-LED display at night Nocni autobus 505, celni oznaceni.jpg
DOT-LED display at night

Flip-disc systems are still widespread but are not often found in new installations. Their place has been filled by LED-based products, which use a small amount of power constantly rather than each time the message changes, but are easily visible in both light and darkness, and, having no moving parts, require little maintenance. [3]

Some producers offer combined displays that use flip-dot and LED technologies together (every dot-disc has its own LED) and thereby they combine their advantages. For example, the Czech company BUSE from Blansko supplies self-patented DOT-LED displays (only DOT and only LED as well) in Central and Eastern Europe. [4] This combined technology was used for outside displays of most of new buses and trams.

Application

See also

Related Research Articles

<span class="mw-page-title-main">Printer (computing)</span> Computer peripheral that prints text or graphics

In the field of computing, a printer is considered a peripheral device that serves the purpose of creating a permanent representation of text or graphics, usually on paper. While the majority of outputs produced by printers are readable by humans, there are instances where barcode printers have found a utility beyond this traditional use. Different types of printers are available for use, including inkjet printers, thermal printers, laser printers, and 3D printers.

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

Twistor memory is a form of computer memory formed by wrapping magnetic tape around a current-carrying wire. Operationally, twistor was very similar to core memory. Twistor could also be used to make ROM memories, including a re-programmable form known as piggyback twistor. Both forms were able to be manufactured using automated processes, which was expected to lead to much lower production costs than core-based systems.

<span class="mw-page-title-main">Flat-panel display</span> Electronic display technology

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

<span class="mw-page-title-main">Variable-message sign</span> Electronic traffic sign with changeable messages

A variable-message sign or message board, often abbreviated VMS, VMB, CMS, or DMS, and in the UK known as a matrix sign, is an electronic traffic sign often used on roadways to give travelers information about special events. Such signs warn of traffic congestion, accidents, incidents such as terrorist attacks, AMBER/Silver/Blue Alerts, roadwork zones, or speed limits on a specific highway segment. In urban areas, VMS are used within parking guidance and information systems to guide drivers to available car parking spaces. They may also ask vehicles to take alternative routes, limit travel speed, warn of duration and location of the incidents, inform of the traffic conditions, or display general public safety messages.

Display may refer to:

<span class="mw-page-title-main">Park and ride</span> Car park with public transport connections

A park and ride, also known as incentive parking or a commuter lot, is a parking lot with public transport connections that allows commuters and other people heading to city centres to leave their vehicles and transfer to a bus, rail system, or carpool for the remainder of the journey. The vehicle is left in the parking lot during the day and retrieved when the owner returns. Park and rides are generally located in the suburbs of metropolitan areas or on the outer edges of large cities. A park and ride that only offers parking for meeting a carpool and not connections to public transport may also be called a park and pool.

A fourteen-segment display (FSD) is a type of display based on 14 segments that can be turned on or off to produce letters and numerals. It is an expansion of the more common seven-segment display, having an additional four diagonal and two vertical segments with the middle horizontal segment broken in half. A seven-segment display suffices for numerals and certain letters, but unambiguously rendering the ISO basic Latin alphabet requires more detail. A slight variation is the sixteen-segment display which allows additional legibility in displaying letters or other symbols.

<span class="mw-page-title-main">Ferranti</span> British electrical engineering company

Ferranti or Ferranti International PLC was a UK electrical engineering and equipment firm that operated for over a century from 1885 until it went bankrupt in 1993. The company was once a constituent of the FTSE 100 Index.

<span class="mw-page-title-main">Ferranti-Packard</span> Defunct Canadian manufacturer of electronic displays

Ferranti-Packard Ltd. was the Canadian division of Ferranti's global manufacturing empire, formed by the 1958 merger of Ferranti Electric and Packard Electric. For several years in the post-war era, the company underwent a dramatic expansion and had several brushes with success in the computer market, but eventually shed various divisions and returned to being an electrical grid supplier once again. The company was purchased in 1998 by the Austrian company, VA TECH. On July 23, 2005 Siemens PTD purchased VA Tech's Transmission and Distribution Division (T&D) group for transformers and switchgear.

<span class="mw-page-title-main">Dot-matrix display</span> Type of display device

A dot-matrix display is a low-cost electronic digital display device that displays information on machines such as clocks, watches, calculators, and many other devices requiring a simple alphanumeric display device of limited resolution.

<span class="mw-page-title-main">Trams in Prague</span> Tram system of the city of Prague, Czechia

The Prague tramway network is the largest tram network in the Czech Republic, consisting of 144 km (89 mi) of standard gauge (1,435 mm) track, 882 tram vehicles and 26 daytime routes, 2 historical and 10 night routes with a total route length of 518 km (322 mi). It is operated by Dopravní podnik hlavního města Prahy a.s., a company owned by the city of Prague. The network is a part of Prague Integrated Transport, the city's integrated public transport system.

<span class="mw-page-title-main">Passenger information system</span> Electronic public transit communication

A passenger information system, or passenger information display system, is an automated system for supplying users of public transport with information about the nature and the state of a public transport service through visual, voice or other media. It is also known as a customer information system or an operational information system. Among the information provided by such systems, a distinction can be drawn between:

<span class="mw-page-title-main">Split-flap display</span> Electromechanical display device

A split-flap display, or sometimes simply a flap display, is a digital electromechanical display device that presents changeable alphanumeric text, and occasionally fixed graphics.

<span class="mw-page-title-main">Destination sign</span> Sign mounted on the front, side or rear of a public transport vehicle

A destination sign or destination indicator/destination blind is a sign mounted on the front, side or rear of a public transport vehicle, such as a bus, tram/streetcar or light rail vehicle, that displays the vehicle's route number and destination, or the route's number and name on transit systems using route names. The main such sign, mounted on the front of the vehicle, usually located above the windshield, is often called the headsign, most likely from the fact that these signs are located on the front, or head, end of the vehicle. Depending on the type of the sign, it might also display intermediate points on the current route, or a road that comprises a significant amount of the route, especially if the route is particularly long and its final terminus by itself is not very helpful in determining where the vehicle is going.

Maurice Kenyon Taylor was an English electrical engineer and inventor, responsible for many diverse technological developments and inventions, producing over 70 patents during his career. He spent most of his career at Ferranti, first in Manchester, then Edinburgh and finally moving to Canada where he led development at their Toronto-area operations, Ferranti-Packard.

<span class="mw-page-title-main">LED display</span> Display technology

A LED display is a flat panel display that uses an array of light-emitting diodes (LEDs) as pixels for a video display. Their brightness allows them to be used outdoors where they are visible in the sun for store signs and billboards. In recent years, they have also become commonly used in destination signs on public transport vehicles, as well as variable-message signs on highways. LED displays are capable of providing general illumination in addition to visual display, as when used for stage lighting or other decorative purposes. LED displays can offer higher contrast ratios than a projector and are thus an alternative to traditional projection screens, and they can be used for large, uninterrupted video walls. microLED displays are LED displays with smaller LEDs, which poses significant development challenges.

A text display is an electronic alphanumeric display device that is mainly or only capable of showing text, or extremely limited graphic characters. This includes electromechanical split-flap displays, vane displays, and flip-disc displays; all-electronic liquid-crystal displays, incandescent eggcrate displays, LED displays, and vacuum fluorescent displays; and even electric nixie tubes.

A vehicle tracking system combines the use of automatic vehicle location in individual vehicles with software that collects these fleet data for a comprehensive picture of vehicle locations. Modern vehicle tracking systems commonly use GPS or GLONASS technology for locating the vehicle, but other types of automatic vehicle location technology can also be used. Vehicle information can be viewed on electronic maps via the Internet or specialized software. Urban public transit authorities are an increasingly common user of vehicle tracking systems, particularly in large cities.

iBus (London) Information system for buses in London

iBus is an Automatic Vehicle Location (AVL) system to improve London Buses using technology installed by Siemens. The system tracks all London's buses, providing passengers with audio-visual announcements and improved information on bus arrivals, with plans to trigger priority at traffic lights.

References

  1. 1 2 3 4 Norman Ball, John Vardalas, "Ferranti-Packard", McGill Queen's Press, 1994, ISBN   0-7735-0983-6
  2. "Familiada", Wikipedia, wolna encyklopedia (in Polish), 2020-07-26, retrieved 2020-07-27
  3. Tucker, Joanne (September 2011). "The Wireless Age for Digital Destination Signage Arrives". Metro Magazine . ISSN   1098-0083. Archived from the original on January 15, 2012. Retrieved 2024-04-04.
  4. Flip DOT-LED BS 210 signs, BUSE s.r.o.