Autostereoscopy

Last updated

Autostereoscopy
Parallax barrier vs lenticular screen.svg
Comparison of parallax-barrier and lenticular autostereoscopic displays. Note: The figure is not to scale.
Process typeMethod of displaying stereoscopic images
Industrial sector(s) 3D imaging
Main technologies or sub-processes Display technology
Product(s) SubRoc-3D stereoscopic 3-D
Leading companies Sega
Year of invention 1982
Developer(s) Sega Nintendo Fujifilm

Autostereoscopy is any method of displaying stereoscopic images (adding binocular perception of 3D depth) without the use of special headgear, glasses, something that affects vision, or anything for eyes on the part of the viewer. Because headgear is not required, it is also called "glasses-free 3D" or "glassesless 3D". There are two broad approaches currently used to accommodate motion parallax and wider viewing angles: eye-tracking, and multiple views so that the display does not need to sense where the viewer's eyes are located. [1] Examples of autostereoscopic displays technology include lenticular lens, parallax barrier, and may include Integral imaging, but notably do not include volumetric display or holographic displays. [2]

Contents

Technology

Many organizations have developed autostereoscopic 3D displays, ranging from experimental displays in university departments to commercial products, and using a range of different technologies. [3] The method of creating autostereoscopic flat panel video displays using lenses was mainly developed in 1985 by Reinhard Boerner at the Heinrich Hertz Institute (HHI) in Berlin. [4] Prototypes of single-viewer displays were already being presented in the 1990s, by Sega AM3 (Floating Image System) [5] and the HHI. Nowadays, this technology has been developed further mainly by European and Japanese companies. One of the best-known 3D displays developed by HHI was the Free2C, a display with very high resolution and very good comfort achieved by an eye tracking system and a seamless mechanical adjustment of the lenses. Eye tracking has been used in a variety of systems in order to limit the number of displayed views to just two, or to enlarge the stereoscopic sweet spot. However, as this limits the display to a single viewer, it is not favored for consumer products.

Currently, most flat-panel displays employ lenticular lenses or parallax barriers that redirect imagery to several viewing regions; however, this manipulation requires reduced image resolutions. When the viewer's head is in a certain position, a different image is seen with each eye, giving a convincing illusion of 3D. Such displays can have multiple viewing zones, thereby allowing multiple users to view the image at the same time, though they may also exhibit dead zones where only a non-stereoscopic or pseudoscopic image can be seen, if at all.

Parallax barrier

The Nintendo 3DS video game console family uses a parallax barrier for 3D imagery; on a newer revision, the New Nintendo 3DS, this is combined with an eye tracking system. New Nintendo 3DS.png
The Nintendo 3DS video game console family uses a parallax barrier for 3D imagery; on a newer revision, the New Nintendo 3DS, this is combined with an eye tracking system.

A parallax barrier is a device placed in front of an image source, such as a liquid crystal display, to allow it to show a stereoscopic image or multiscopic image without the need for the viewer to wear 3D glasses. The principle of the parallax barrier was independently invented by Auguste Berthier, who published first but produced no practical results, [6] and by Frederic E. Ives, who made and exhibited the first known functional autostereoscopic image in 1901. [7] About two years later, Ives began selling specimen images as novelties, the first known commercial use.

In the early 2000s, Sharp developed the electronic flat-panel application of this old technology to commercialization, briefly selling two laptops with the world's only 3D LCD screens. [8] These displays are no longer available from Sharp but are still being manufactured and further developed from other companies. Similarly, Hitachi has released the first 3D mobile phone for the Japanese market under distribution by KDDI. [9] [10] In 2009, Fujifilm released the FinePix Real 3D W1 digital camera, which features a built-in autostereoscopic LCD measuring 2.8 in (71 mm) diagonal. The Nintendo 3DS video game console family uses a parallax barrier for 3D imagery; on a newer revision, the New Nintendo 3DS, this is combined with an eye tracking system.

Integral photography and lenticular arrays

The principle of integral photography, which uses a two-dimensional (X–Y) array of many small lenses to capture a 3-D scene, was introduced by Gabriel Lippmann in 1908. [11] [12] Integral photography is capable of creating window-like autostereoscopic displays that reproduce objects and scenes life-size, with full parallax and perspective shift and even the depth cue of accommodation, but the full realization of this potential requires a very large number of very small high-quality optical systems and very high bandwidth. Only relatively crude photographic and video implementations have yet been produced.

One-dimensional arrays of cylindrical lenses were patented by Walter Hess in 1912. [13] By replacing the line and space pairs in a simple parallax barrier with tiny cylindrical lenses, Hess avoided the light loss that dimmed images viewed by transmitted light and that made prints on paper unacceptably dark. [14] An additional benefit is that the position of the observer is less restricted, as the substitution of lenses is geometrically equivalent to narrowing the spaces in a line-and-space barrier.

Philips solved a significant problem with electronic displays in the mid-1990s by slanting the cylindrical lenses with respect to the underlying pixel grid. [15] Based on this idea, Philips produced its WOWvx line until 2009, running up to 2160p (a resolution of 3840×2160 pixels) with 46 viewing angles. [16] Lenny Lipton's company, StereoGraphics, produced displays based on the same idea, citing a much earlier patent for the slanted lenticulars. Magnetic3d and Zero Creative have also been involved. [17]

Compressive light field displays

With rapid advances in optical fabrication, digital processing power, and computational models for human perception, a new generation of display technology is emerging: compressive light field displays. These architectures explore the co-design of optical elements and compressive computation while taking particular characteristics of the human visual system into account. Compressive display designs include dual [18] and multilayer [19] [20] [21] devices that are driven by algorithms such as computed tomography and Non-negative matrix factorization and non-negative tensor factorization.

Autostereoscopic content creation and conversion

Tools for the instant conversion of existing 3D movies to autostereoscopic were demonstrated by Dolby, Stereolabs and Viva3D. [22] [23] [24]

Other

Dimension Technologies released a range of commercially available 2D/3D switchable LCDs in 2002 using a combination of parallax barriers and lenticular lenses. [25] [26] SeeReal Technologies has developed a holographic display based on eye tracking. [27] CubicVue exhibited a color filter pattern autostereoscopic display at the Consumer Electronics Association's i-Stage competition in 2009. [28] [29]

There are a variety of other autostereo systems as well, such as volumetric display, in which the reconstructed light field occupies a true volume of space, and integral imaging, which uses a fly's-eye lens array.

The term automultiscopic display has recently been introduced as a shorter synonym for the lengthy "multi-view autostereoscopic 3D display", [30] as well as for the earlier, more specific "parallax panoramagram". The latter term originally indicated a continuous sampling along a horizontal line of viewpoints, e.g., image capture using a very large lens or a moving camera and a shifting barrier screen, but it later came to include synthesis from a relatively large number of discrete views.

Sunny Ocean Studios, located in Singapore, has been credited with developing an automultiscopic screen that can display autostereo 3D images from 64 different reference points. [31]

A fundamentally new approach to autostereoscopy called HR3D has been developed by researchers from MIT's Media Lab. It would consume half as much power, doubling the battery life if used with devices like the Nintendo 3DS, without compromising screen brightness or resolution; other advantages include a larger viewing angle and maintaining the 3D effect when the screen is rotated. [32]

Movement parallax: single view vs. multi-view systems

Movement parallax refers to the fact that the view of a scene changes with movement of the head. Thus, different images of the scene are seen as the head is moved from left to right, and from up to down.

Many autostereoscopic displays are single-view displays and are thus not capable of reproducing the sense of movement parallax, except for a single viewer in systems capable of eye tracking.

Some autostereoscopic displays, however, are multi-view displays, and are thus capable of providing the perception of left–right movement parallax. [33] Eight and sixteen views are typical for such displays. While it is theoretically possible to simulate the perception of up–down movement parallax, no current display systems are known to do so, and the up–down effect is widely seen as less important than left–right movement parallax. One consequence of not including parallax about both axes becomes more evident as objects increasingly distant from the plane of the display are presented: as the viewer moves closer to or farther away from the display, such objects will more obviously exhibit the effects of perspective shift about one axis but not the other, appearing variously stretched or squashed to a viewer not positioned at the optimal distance from the display.[ citation needed ]

Vergence-accommodation conflict

Autostereoscopic displays display stereoscopic content without matching focal depth, thereby exhibiting vergence-accommodation conflict. [34]

Related Research Articles

<span class="mw-page-title-main">Stereoscopy</span> Technique for creating or enhancing the illusion of depth in an image

Stereoscopy is a technique for creating or enhancing the illusion of depth in an image by means of stereopsis for binocular vision. The word stereoscopy derives from Greek στερεός (stereos) 'firm, solid', and σκοπέω (skopeō) 'to look, to see'. Any stereoscopic image is called a stereogram. Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope.

3D films are motion pictures made to give an illusion of three-dimensional solidity, usually with the help of special glasses worn by viewers. They have existed in some form since 1915, but had been largely relegated to a niche in the motion picture industry because of the costly hardware and processes required to produce and display a 3D film, and the lack of a standardized format for all segments of the entertainment business. Nonetheless, 3D films were prominently featured in the 1950s in American cinema, and later experienced a worldwide resurgence in the 1980s and 1990s driven by IMAX high-end theaters and Disney-themed venues. 3D films became increasingly successful throughout the 2000s, peaking with the success of 3D presentations of Avatar in December 2009, after which 3D films again decreased in popularity. Certain directors have also taken more experimental approaches to 3D filmmaking, most notably celebrated auteur Jean-Luc Godard in his film Goodbye to Language.

A light field is a vector function that describes the amount of light flowing in every direction through every point in a space. The space of all possible light rays is given by the five-dimensional plenoptic function, and the magnitude of each ray is given by its radiance. Michael Faraday was the first to propose that light should be interpreted as a field, much like the magnetic fields on which he had been working. The term light field was coined by Andrey Gershun in a classic 1936 paper on the radiometric properties of light in three-dimensional space.

<span class="mw-page-title-main">Lenticular printing</span> Technology for creating optical illusions

Lenticular printing is a technology in which lenticular lenses are used to produce printed images with an illusion of depth, or the ability to change or move as they are viewed from different angles.

<span class="mw-page-title-main">3D display</span> Display device

A 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.

A volumetric display device is a display device that forms a visual representation of an object in three physical dimensions, as opposed to the planar image of traditional screens that simulate depth through a number of different visual effects. One definition offered by pioneers in the field is that volumetric displays create 3D imagery via the emission, scattering, or relaying of illumination from well-defined regions in (x,y,z) space.

<span class="mw-page-title-main">Active shutter 3D system</span> Method of displaying stereoscopic 3D images

An active shutter 3D system is a technique of displaying stereoscopic 3D images. It works by only presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image.

<span class="mw-page-title-main">Anaglyph 3D</span> Method of representing images in 3D

Anaglyph 3D is the stereoscopic 3D effect achieved by means of encoding each eye's image using filters of different colors, typically red and cyan. Anaglyph 3D images contain two differently filtered colored images, one for each eye. When viewed through the "color-coded" "anaglyph glasses", each of the two images reaches the eye it's intended for, revealing an integrated stereoscopic image. The visual cortex of the brain fuses this into the perception of a three-dimensional scene or composition.

<span class="mw-page-title-main">Lenticular lens</span> Technology for making moving images

A lenticular lens is an array of lenses, designed so that when viewed from slightly different angles, different parts of the image underneath are shown. The most common example is the lenses used in lenticular printing, where the technology is used to give an illusion of depth, or to make images that appear to change or move as the image is viewed from different angles.

Integral imaging is a three-dimensional imaging technique that captures and reproduces a light field by using a two-dimensional array of microlenses, sometimes called a fly's-eye lens, normally without the aid of a larger overall objective or viewing lens. In capture mode, in which a film or detector is coupled to the microlens array, each microlens allows an image of the subject as seen from the viewpoint of that lens's location to be acquired. In reproduction mode, in which an object or source array is coupled to the microlens array, each microlens allows each observing eye to see only the area of the associated micro-image containing the portion of the subject that would have been visible through that space from that eye's location. The optical geometry can perhaps be visualized more easily by substituting pinholes for the microlenses, as has actually been done for some demonstrations and special applications.

<span class="mw-page-title-main">Parallax barrier</span>

A parallax barrier is a device placed in front of an image source, such as a liquid crystal display, to allow it to show a stereoscopic or multiscopic image without the need for the viewer to wear 3D glasses. Placed in front of the normal LCD, it consists of an opaque layer with a series of precisely spaced slits, allowing each eye to see a different set of pixels, so creating a sense of depth through parallax in an effect similar to what lenticular printing produces for printed products and lenticular lenses for other displays. A disadvantage of the method in its simplest form is that the viewer must be positioned in a well-defined spot to experience the 3D effect. However, recent versions of this technology have addressed this issue by using face-tracking to adjust the relative positions of the pixels and barrier slits according to the location of the user's eyes, allowing the user to experience the 3D from a wide range of positions. Another disadvantage is that the horizontal pixel count viewable by each eye is halved, reducing the overall horizontal resolution of the image.

Parallax scanning depth enhancing imaging methods rely on discrete parallax differences between depth planes in a scene. The differences are caused by a parallax scan. When properly balanced (tuned) and displayed, the discrete parallax differences are perceived by the brain as depth.

<span class="mw-page-title-main">3D television</span> Television that conveys depth perception to the viewer

3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses. As of 2017, most 3D TV sets and services are no longer available from manufacturers.

<span class="mw-page-title-main">3D stereo view</span> Enables viewing of objects through any stereo pattern

A 3D stereo view is the viewing of objects through any stereo pattern.

<span class="mw-page-title-main">Fujifilm FinePix Real 3D</span>

The Fujifilm FinePix Real 3D W series is a line of consumer-grade digital cameras designed to capture stereoscopic images that recreate the perception of 3D depth, having both still and video formats while retaining standard 2D still image and video modes. The cameras feature a pair of lenses, and an autostereoscopic display which directs pixels of the two offset images to the user's left and right eyes simultaneously. Methods are included for extending or contracting the stereoscopic baseline, albeit with an asynchronous timer or manually depressing the shutter twice. The dual-lens architecture also enables novel modes such as simultaneous near and far zoom capture of a 2D image. The remainder of the camera is similar to other compact digital cameras.

HR3D is a multiscopic 3D display technology developed at the MIT Media Lab.

A 3D display is multiscopic if it projects more than two images out into the world, unlike conventional 3D stereoscopy, which simulates a 3D scene by displaying only two different views of it, each visible to only one of the viewer's eyes. Multiscopic displays can represent the subject as viewed from a series of locations, and allow each image to be visible only from a range of eye locations narrower than the average human interocular distance of 63 mm. As a result, not only does each eye see a different image, but different pairs of images are seen from different viewing locations.

<span class="mw-page-title-main">Stereoscopic video game</span>

A stereoscopic video game is a video game which uses stereoscopic technologies to create depth perception for the player by any form of stereo display. Such games should not be confused with video games that use 3D game graphics on a mono screen, which give the illusion of depth only by monocular cues but lack binocular depth information.

<span class="mw-page-title-main">Barrier-grid animation and stereography</span> Animation method

Barrier-grid animation or picket-fence animation is an animation effect created by moving a striped transparent overlay across an interlaced image. The barrier-grid technique originated in the late 1890s, overlapping with the development of parallax stereography (Relièphographie) for 3D autostereograms. The technique has also been used for color-changing pictures, but to a much lesser extent.

<span class="mw-page-title-main">Vergence-accommodation conflict</span> Visual and perceptual phenomenon

Vergence-accommodation conflict (VAC), also known as accommodation-vergence conflict, is a visual phenomenon that occurs when the brain receives mismatching cues between vergence and accommodation of the eye. This commonly occurs in virtual reality devices, augmented reality devices, 3D movies, and other types of stereoscopic displays and autostereoscopic displays. The effect can be unpleasant and cause eye strain.

References

  1. Dodgson, N.A. (August 2005). "Autostereoscopic 3D Displays". IEEE Computer. 38 (8): 31–36. doi:10.1109/MC.2005.252. ISSN   0018-9162. S2CID   34507707.
  2. "Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays" (PDF). 22 September 2022. Archived from the original (PDF) on 22 September 2022. Retrieved 22 September 2022.
  3. Holliman, N.S. (2006). Three-Dimensional Display Systems (PDF). ISBN   0-7503-0646-7. Archived from the original (PDF) on 4 July 2010. Retrieved 30 March 2010.
  4. Boerner, R. (1985). "3D-Bildprojektion in Linsenrasterschirmen". Fernseh- und Kinotechnik (in German).
  5. Electronic Gaming Monthly , issue 93 (April 1997), page 22
  6. Berthier, Auguste. (May 16 and 23, 1896). "Images stéréoscopiques de grand format" (in French). Cosmos34 (590, 591): 205–210, 227-233 (see 229-231)
  7. Ives, Frederic E. (1902). "A novel stereogram". Journal of the Franklin Institute. 153: 51–52. doi:10.1016/S0016-0032(02)90195-X. Reprinted in Benton "Selected Papers n Three-Dimensional Displays"
  8. "2D/3D Switchable Displays" (PDF). Sharp white paper. Archived (PDF) from the original on 30 May 2008. Retrieved 19 June 2008.
  9. "Woooケータイ H001 - 2009年 - 製品アーカイブ - au by KDDI". Au.kddi.com. Archived from the original on 4 May 2010. Retrieved 15 June 2010.
  10. "Hitachi Comes Up with 3.1-Inch 3D IPS Display". News.softpedia.com. 12 April 2010. Retrieved 15 June 2010.
  11. Lippmann, G. (2 March 1908). "Épreuves réversibles. Photographies intégrales". Comptes Rendus de l'Académie des Sciences. 146 (9): 446–451. Bibcode:1908BSBA...13A.245D. Reprinted in Benton "Selected Papers on Three-Dimensional Displays"
  12. Frédo Durand; MIT CSAIL. "Reversible Prints. Integral Photographs" (PDF). Retrieved 17 February 2011. (This crude English translation of Lippmann's 1908 paper will be more comprehensible if the reader bears in mind that "dark room" and "darkroom" are the translator's mistaken renderings of "chambre noire", the French equivalent of the Latin "camera obscura", and should be read as "camera" in the thirteen places where this error occurs.)
  13. 1128979,Hess, Walter,"Stereoscopic picture",published 1915, filed 1 June 1912, patented 16 February 1915. Hess filed several similar patent applications in Europe in 1911 and 1912, which resulted in several patents issued in 1912 and 1913.
  14. Benton, Stephen (2001). Selected Papers on Three-Dimensional Displays. Milestone Series. Vol. MS 162. SPIE Optical Engineering Press. p. xx-xxi.
  15. van Berkel, Cees (1997). Fisher, Scott S; Merritt, John O; Bolas, Mark T (eds.). "Characterisation and optimisation of 3D-LCD module design". Proc. SPIE. Stereoscopic Displays and Virtual Reality Systems IV. 3012: 179–186. Bibcode:1997SPIE.3012..179V. doi:10.1117/12.274456. S2CID   62223285.
  16. Fermoso, Jose (1 October 2008). "Philips' 3D HDTV Might Destroy Space-Time Continuum, Wallets - Gadget Lab". Wired.com. Archived from the original on 3 June 2010. Retrieved 15 June 2010.
  17. "xyZ 3D Displays - Autostereoscopic 3D TV - 3D LCD - 3D Plasma - No Glasses 3D". Xyz3d.tv. Archived from the original on 20 April 2010. Retrieved 15 June 2010.
  18. Lanman, D.; Hirsch, M.; Kim, Y.; Raskar, R. (2010). "Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization".{{cite journal}}: Cite journal requires |journal= (help)
  19. Wetzstein, G.; Lanman, D.; Heidrich, W.; Raskar, R. (2011). "Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays". ACM Transactions on Graphics (SIGGRAPH).{{cite journal}}: Cite journal requires |journal= (help)
  20. Lanman, D.; Wetzstein, G.; Hirsch, M.; Heidrich, W.; Raskar, R. (2011). "Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs". ACM Transactions on Graphics (SIGGRAPH Asia).{{cite journal}}: Cite journal requires |journal= (help)
  21. Wetzstein, G.; Lanman, D.; Hirsch, M.; Raskar, R. (2012). "Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting". ACM Transactions on Graphics (SIGGRAPH).{{cite journal}}: Cite journal requires |journal= (help)
  22. Chinnock, Chris (11 April 2014). "NAB 2014 – Dolby 3D Details Partnership with Stereolabs". Display Central. Archived from the original on 23 April 2014. Retrieved 19 July 2016.
  23. "Viva3D autostereo output for glasses-free 3D monitors". ViewPoint 3D. Retrieved 19 July 2016.
  24. Robin C. Colclough. "Viva3D Real-time Stereo Vision: Stereo conversion & depth determination with mixed 3D graphics" (PDF). ViewPoint 3D. Retrieved 19 July 2016.
  25. Smith, Tom (14 June 2002). "Review : Dimension Technologies 2015XLS". BlueSmoke. Archived from the original on 1 May 2011. Retrieved 25 March 2010.
  26. McAllister, David F. (February 2002). "Stereo & 3D Display Technologies, Display Technology" (PDF). In Hornak, Joseph P. (ed.). Encyclopedia of Imaging Science and Technology, 2 Volume Set (Hardcover). Vol. 2. New York: Wiley & Sons. pp. 1327–1344. ISBN   978-0-471-33276-3.
  27. Ooshita, Junichi (25 October 2007). "SeeReal Technologies Exhibits Holographic 3D Video Display, Targeting Market Debut in 2009". TechOn!. Retrieved 23 March 2010.
  28. "CubicVue LLC : i-stage". I-stage.ce.org. 22 February 1999. Retrieved 15 June 2010.
  29. Heater, Brian (23 March 2010). "Nintendo Says Next-Gen DS Will Add a 3D Display". PC Magazine.
  30. Tomas Akenine-Moller, Tomas (2006). Rendering Techniques 2006. A K Peters, Ltd. p. 73. ISBN   9781568813516.
  31. Pop, Sebastian (3 February 2010). "Sunny Ocean Studios Fulfills No-Glasses 3D Dream". Softpedia.
  32. Hardesty, Larry (4 May 2011). "Better glasses-free 3-D: A fundamentally new approach". Phys.org. Retrieved 4 March 2012.
  33. Dodgson, N.A.; Moore, J. R.; Lang, S. R. (1999). "Multi-View Autostereoscopic 3D Display". IEEE Computer. 38 (8): 31–36. CiteSeerX   10.1.1.42.7623 . doi:10.1109/MC.2005.252. ISSN   0018-9162. S2CID   34507707.
  34. "Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays" (PDF). 22 September 2022. Archived from the original (PDF) on 22 September 2022. Retrieved 22 September 2022.