A 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.
As of 2021, the most common type of 3D display is a stereoscopic display, which is the type of display used in almost all virtual reality equipment. 3D displays can be near-eye displays like in VR headsets, or they can be in a device further away from the eyes like a 3D-enabled mobile device or 3D movie theater.
The term “3D display” can also be used to refer to a volumetric display which may generate content that can be viewed from all angles.
The first 3D display was created by Sir Charles Wheatstone in 1832. [1] It was a stereoscopic display that had rudimentary ability for representing depth.
Stereoscopic displays are commonly referred to as “stereo displays,” “stereo 3D displays,” “stereoscopic 3D displays,” or sometimes erroneously as just “3D displays.”
The basic technique of stereoscopic displays is to present offset images that are displayed separately to the left and right eye. Both of these 2D offset images are then combined in the brain to give the perception of 3D depth. Although the term "3D" is ubiquitously used, the presentation of dual 2D images is distinctly different from displaying a light field, and is also different from displaying an image in three-dimensional space.
The most notable difference to displays that can show full 3D is that the observer's head movements and change in accommodation of the eyes will not change the visuals seen by the viewer. For example, some holographic displays do not have such limitations.
It is an overstatement of capability to refer to dual 2D images as being "3D". The accurate term "stereoscopic" is more cumbersome than the common misnomer "3D", which has been entrenched after many decades of unquestioned misuse. 3D displays are often referred to as also stereoscopic displays because they meet the lower criteria of being stereoscopic as well.
Based on the principles of stereopsis, described by Sir Charles Wheatstone in the 1830s, stereoscopic technology provides a different image to the viewer's left and right eyes. The following are some of the technical details and methodologies employed in some of the more notable stereoscopic systems that have been developed.
Traditional stereoscopic photography consists of creating a 3D illusion starting from a pair of 2D images, a stereogram. The easiest way to enhance depth perception in the brain is to provide the eyes of the viewer with two different images, representing two perspectives of the same object, with a minor deviation exactly equal to the perspectives that both eyes naturally receive in binocular vision.
If eyestrain and distortion are to be avoided, each of the two 2D images preferably should be presented to each eye of the viewer so that any object at infinite distance seen by the viewer should be perceived by that eye while it is oriented straight ahead, the viewer's eyes being neither crossed nor diverging. When the picture contains no object at infinite distance, such as a horizon or a cloud, the pictures should be spaced correspondingly closer together.
The side-by-side method is extremely simple to create, but it can be difficult or uncomfortable to view without optical aids.
A stereoscope is a device for viewing stereographic cards, which are cards that contain two separate images that are printed side by side to create the illusion of a three-dimensional image.
Pairs of stereo views printed on a transparent base are viewed by transmitted light. One advantage of transparency viewing is the opportunity for a wider, more realistic dynamic range than is practical with prints on an opaque base; another is that a wider field of view may be presented since the images, being illuminated from the rear, may be placed much closer to the lenses.
The practice of viewing film-based stereoscopic transparencies dates to at least as early as 1931, when Tru-Vue began to market sets of stereo views on strips of 35 mm film that were fed through a hand-held Bakelite viewer. In 1939, a modified and miniaturized variation of this technology, employing cardboard disks containing seven pairs of small Kodachrome color film transparencies, was introduced as the View-Master.
The user typically wears a helmet or glasses with two small LCD or OLED displays with magnifying lenses, one for each eye. The technology can be used to show stereo films, images or games. Head-mounted displays may also be coupled with head-tracking devices, allowing the user to "look around" the virtual world by moving their head, eliminating the need for a separate controller.
Owing to rapid advancements in computer graphics and the continuing miniaturization of video and other equipment these devices are beginning to become available at more reasonable cost. Head-mounted or wearable glasses may be used to view a see-through image imposed upon the real world view, creating what is called augmented reality. This is done by reflecting the video images through partially reflective mirrors. The real world can be seen through the partial mirror.
A recent development in holographic-waveguide or "waveguide-based optics" allows a stereoscopic images to be superimposed on real world without the uses of bulky reflective mirror. [2] [3]
Head-mounted projection displays (HMPD) is similar to head-mounted displays but with images projected to and displayed on a retroreflective screen, The advantage of this technology over head-mounted display is that the focusing and vergence issues didn't require fixing with corrective eye lenses. For image generation, Pico-projectors are used instead of LCD or OLED screens. [4] [5]
With the eclipse method, a shutter blocks light from each appropriate eye when the converse eye's image is projected on the screen. The display alternates between left and right images, and opens and closes the shutters in the glasses or viewer in synchronization with the images on the screen. This was the basis of the Teleview system which was used briefly in 1922. [6] [7]
A variation on the eclipse method is used in LCD shutter glasses. Glasses containing liquid crystal that will let light through in synchronization with the images on the cinema, television or computer screen, using the concept of alternate-frame sequencing. This is the method used by nVidia, XpanD 3D, and earlier IMAX systems. A drawback of this method is the need for each person viewing to wear expensive, electronic glasses that must be synchronized with the display system using a wireless signal or attached wire. The shutter-glasses are heavier than most polarized glasses, though lighter models are no heavier than some sunglasses or deluxe polarized glasses. [8] However these systems do not require a silver screen for projected images.
Liquid crystal light valves work by rotating light between two polarizing filters. Due to these internal polarizers, LCD shutter-glasses darken the display image of any LCD, plasma, or projector image source, which has the result that images appear dimmer and contrast is lower than for normal non-3D viewing. This is not necessarily a usage problem; for some types of displays which are already very bright with poor grayish black levels, LCD shutter glasses may actually improve the image quality.
In an anaglyph, the two images are superimposed in an additive light setting through two filters, one red and one cyan. In a subtractive light setting, the two images are printed in the same complementary colors on white paper. Glasses with colored filters in each eye separate the appropriate image by canceling the filter color out and rendering the complementary color black. A compensating technique, commonly known as Anachrome, uses a slightly more transparent cyan filter in the patented glasses associated with the technique. Process reconfigures the typical anaglyph image to have less parallax.
An alternative to the usual red and cyan filter system of anaglyph is ColorCode 3-D, a patented anaglyph system which was invented in order to present an anaglyph image in conjunction with the NTSC television standard, in which the red channel is often compromised. ColorCode uses the complementary colors of yellow and dark blue on-screen, and the colors of the glasses' lenses are amber and dark blue.
To present a stereoscopic picture, two images are projected superimposed onto the same screen through different polarizing filters. The viewer wears eyeglasses which also contain a pair of polarizing filters oriented differently (clockwise/counterclockwise with circular polarization or at 90 degree angles, usually 45 and 135 degrees, [9] with linear polarization). As each filter passes only that light which is similarly polarized and blocks the light polarized differently, each eye sees a different image. This is used to produce a three-dimensional effect by projecting the same scene into both eyes, but depicted from slightly different perspectives. Additionally, since both lenses have the same color, people with one dominant eye, where one eye is used more, are able to see the colors properly, previously negated by the separation of the two colors.
Circular polarization has an advantage over linear polarization, in that the viewer does not need to have their head upright and aligned with the screen for the polarization to work properly. With linear polarization, turning the glasses sideways causes the filters to go out of alignment with the screen filters causing the image to fade and for each eye to see the opposite frame more easily. For circular polarization, the polarizing effect works regardless of how the viewer's head is aligned with the screen such as tilted sideways, or even upside down. The left eye will still only see the image intended for it, and vice versa, without fading or crosstalk.
Polarized light reflected from an ordinary motion picture screen typically loses most of its polarization. So an expensive silver screen or aluminized screen with negligible polarization loss has to be used. All types of polarization will result in a darkening of the displayed image and poorer contrast compared to non-3D images. Light from lamps is normally emitted as a random collection of polarizations, while a polarization filter only passes a fraction of the light. As a result, the screen image is darker. This darkening can be compensated by increasing the brightness of the projector light source. If the initial polarization filter is inserted between the lamp and the image generation element, the light intensity striking the image element is not any higher than normal without the polarizing filter, and overall image contrast transmitted to the screen is not affected.
Dolby 3D uses specific wavelengths of red, green, and blue for the right eye, and different wavelengths of red, green, and blue for the left eye. Eyeglasses which filter out the very specific wavelengths allow the wearer to see a 3D image. This technology eliminates the expensive silver screens required for polarized systems such as RealD, which is the most common 3D display system in theaters. It does, however, require much more expensive glasses than the polarized systems. It is also known as spectral comb filtering or wavelength multiplex visualization
The Omega 3D/Panavision 3D system also uses this technology, though with a wider spectrum and more "teeth" to the "comb" (5 for each eye in the Omega/Panavision system). The use of more spectral bands per eye eliminates the need to color process the image, required by the Dolby system. Evenly dividing the visible spectrum between the eyes gives the viewer a more relaxed "feel" as the light energy and color balance is nearly 50-50. Like the Dolby system, the Omega system can be used with white or silver screens. But it can be used with either film or digital projectors, unlike the Dolby filters that are only used on a digital system with a color correcting processor provided by Dolby. The Omega/Panavision system also claims that their glasses are cheaper to manufacture than those used by Dolby. [10] In June 2012, the Omega 3D/Panavision 3D system was discontinued by DPVO Theatrical, who marketed it on behalf of Panavision, citing "challenging global economic and 3D market conditions".[ citation needed ] Although DPVO dissolved its business operations, Omega Optical continues promoting and selling 3D systems to non-theatrical markets. Omega Optical’s 3D system contains projection filters and 3D glasses. In addition to the passive stereoscopic 3D system, Omega Optical has produced enhanced anaglyph 3D glasses. The Omega’s red/cyan anaglyph glasses use complex metal oxide thin film coatings and high quality annealed glass optics.
The Pulfrich effect is a psychophysical percept wherein lateral motion of an object in the field of view is interpreted by the visual cortex as having a depth component, due to a relative difference in signal timings between the two eyes.
Prismatic glasses make cross-viewing easier as well as over/under-viewing possible, examples include the KMQ viewer.
In this method, glasses are not necessary to see the stereoscopic image. Lenticular lens and parallax barrier technologies involve imposing two (or more) images on the same sheet, in narrow, alternating strips, and using a screen that either blocks one of the two images' strips (in the case of parallax barriers) or uses equally narrow lenses to bend the strips of image and make it appear to fill the entire image (in the case of lenticular prints). To produce the stereoscopic effect, the person must be positioned so that one eye sees one of the two images and the other sees the other. The optical principles of multiview auto-stereoscopy have been known for over a century. [11]
Both images are projected onto a high-gain, corrugated screen which reflects light at acute angles. In order to see the stereoscopic image, the viewer must sit within a very narrow angle that is nearly perpendicular to the screen, limiting the size of the audience. Lenticular was used for theatrical presentation of numerous shorts in Russia from 1940 to 1948 [12] and in 1946 for the feature-length film Robinzon Kruzo [13]
Though its use in theatrical presentations has been rather limited, lenticular has been widely used for a variety of novelty items and has even been used in amateur 3D photography. [14] [15] Recent use includes the Fujifilm FinePix Real 3D with an autostereoscopic display that was released in 2009. Other examples for this technology include autostereoscopic LCD displays on monitors, notebooks, TVs, mobile phones and gaming devices, such as the Nintendo 3DS.
Volumetric displays use some physical mechanism to display points of light within a volume. Such displays use voxels instead of pixels. Volumetric displays include multiplanar displays, which have multiple display planes stacked up, and rotating panel displays, where a rotating panel sweeps out a volume.
Other technologies have been developed to project light dots in the air above a device. An infrared laser is focused on the destination in space, generating a small bubble of plasma which emits visible light.
A light field display tries to recreate a "light field" on the surface of the display. In contrast to a 2D display which shows a distinct color on each pixel, a light field display shows a distinct color on each pixel for each direction that the light ray emits to. This way, eyes from different positions will see different pictures on the display, creating parallax and thus creating a sense of 3D. A light field display is like a glass window, people see 3D objects behind the glass, despite that all light rays they see come from (through) the glass.
The light field in front of the display can be created in two ways: 1) by emitting different light rays in different directions at each point on the display; 2) by recreating a wavefront in front of the display. Displays using the first method are called ray-based or light field displays. Displays using the second method are called wavefront-based or holographic displays. Wavefront-based displays work in the same way as holograms. Compared to ray-based displays, a wavefront-based display not only reconstructs the light field, but also reconstructs the curvature of the plane waves, and the phase differences of the waves in different directions. [16]
Integral photography is one of the ray-based methods with full-parallax information. However, there are also ray-based techniques developed with horizontal-parallax-only. [16]
Holographic display is a display technology that has the ability to provide all four eye mechanisms: binocular disparity, motion parallax, accommodation and convergence. The 3D objects can be viewed without wearing any special glasses and no visual fatigue will be caused to human eyes.
In 2013, a Silicon valley Company LEIA Inc started manufacturing holographic displays well suited for mobile devices (watches, smartphones or tablets) using a multi-directional backlight and allowing a wide full-parallax angle view to see 3D content without the need of glasses. [17] Their first product was part of a mobile phone (Red Hydrogen One) and later on in their own Android tablet.[ citation needed ]
Integral imaging is an autostereoscopic or multiscopic 3D display, meaning that it displays a 3D image without the use of special glasses on the part of the viewer. It achieves this by placing an array of microlenses (similar to a lenticular lens) in front of the image, where each lens looks different depending on viewing angle. Thus rather than displaying a 2D image that looks the same from every direction, it reproduces a 3D light field, creating stereo images that exhibit parallax when the viewer moves.
A new display technology called "compressive light field" is being developed. These prototype displays use layered LCD panels and compression algorithms at the time of display. Designs include dual [18] and multilayer [19] [20] [21] devices that are driven by algorithms such as computed tomography and Non-negative matrix factorization and non-negative tensor factorization.
Each of these display technologies can be seen to have limitations, whether the location of the viewer, cumbersome or unsightly equipment or great cost. The display of artifact-free 3D images remains difficult.[ citation needed ]
Stereoscopy is a technique for creating or enhancing the illusion of depth in an image by means of stereopsis for binocular vision. The word stereoscopy derives from Greek στερεός (stereos) 'firm, solid' and σκοπέω (skopeō) 'to look, to see'. Any stereoscopic image is called a stereogram. Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope.
3D films are motion pictures made to give an illusion of three-dimensional solidity, usually with the help of special glasses worn by viewers. They have existed in some form since 1915, but had been largely relegated to a niche in the motion picture industry because of the costly hardware and processes required to produce and display a 3D film, and the lack of a standardized format for all segments of the entertainment business. Nonetheless, 3D films were prominently featured in the 1950s in American cinema, and later experienced a worldwide resurgence in the 1980s and 1990s driven by IMAX high-end theaters and Disney-themed venues. 3D films became increasingly successful throughout the 2000s, peaking with the success of 3D presentations of Avatar in December 2009, after which 3D films again decreased in popularity. Certain directors have also taken more experimental approaches to 3D filmmaking, most notably celebrated auteur Jean-Luc Godard in his film Goodbye to Language.
An active shutter 3D system is a technique of displaying stereoscopic 3D images. It works by only presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image.
A polarized 3D system uses polarization glasses to create the illusion of three-dimensional images by restricting the light that reaches each eye.
Anaglyph 3D is the stereoscopic 3D effect achieved by means of encoding each eye's image using filters of different colors, typically red and cyan. Anaglyph 3D images contain two differently filtered colored images, one for each eye. When viewed through the "color-coded" "anaglyph glasses", each of the two images is visible to the eye it is intended for, revealing an integrated stereoscopic image. The visual cortex of the brain fuses this into the perception of a three-dimensional scene or composition.
A vectograph is a type of stereoscopic print or transparency viewed by using the polarized 3D glasses most commonly associated with projected 3D motion pictures.
Autostereoscopy is any method of displaying stereoscopic images without the use of special headgear, glasses, something that affects vision, or anything for eyes on the part of the viewer. Because headgear is not required, it is also called "glasses-free 3D" or "glassesless 3D".
RealD 3D is a digital stereoscopic projection technology made and sold by RealD. It is currently the most widely used technology for watching 3D films in theaters. Worldwide, RealD 3D is installed in more than 26,500 auditoriums by approximately 1,200 exhibitors in 72 countries as of June 2015.
A parallax barrier is a device placed in front of an image source, such as a liquid crystal display, to allow it to show a stereoscopic or multiscopic image without the need for the viewer to wear 3D glasses. Placed in front of the normal LCD, it consists of an opaque layer with a series of precisely spaced slits, allowing each eye to see a different set of pixels, so creating a sense of depth through parallax in an effect similar to what lenticular printing produces for printed products and lenticular lenses for other displays. A disadvantage of the method in its simplest form is that the viewer must be positioned in a well-defined spot to experience the 3D effect. However, recent versions of this technology have addressed this issue by using face-tracking to adjust the relative positions of the pixels and barrier slits according to the location of the user's eyes, allowing the user to experience the 3D from a wide range of positions. Another disadvantage is that the horizontal pixel count viewable by each eye is halved, reducing the overall horizontal resolution of the image.
Phantograms, also known as Phantaglyphs, Op-Ups, free-standing anaglyphs, levitated images, and book anaglyphs, are a form of optical illusion. Phantograms use perspectival anamorphosis to produce a 2D image that is distorted in a particular way so as to appear, to a viewer at a particular vantage point, three-dimensional, standing above or recessed into a flat surface. The illusion of depth and perspective is heightened by stereoscopy techniques; a combination of two images, most typically but not necessarily an anaglyph. With common (red–cyan) 3D glasses, the viewer's vision is segregated so that each eye sees a different image.
3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses. As of 2017, most 3D TV sets and services are no longer available from manufacturers.
A 3D stereo view is the viewing of objects through any stereo pattern.
Dolby 3D is a marketing name for a system from Dolby Laboratories, Inc. to show three-dimensional motion pictures in a digital cinema.
The Fujifilm FinePix Real 3D W series is a line of consumer-grade digital cameras designed to capture stereoscopic images that recreate the perception of 3D depth, having both still and video formats while retaining standard 2D still image and video modes. The cameras feature a pair of lenses, and an autostereoscopic display which directs pixels of the two offset images to the user's left and right eyes simultaneously. Methods are included for extending or contracting the stereoscopic baseline, albeit with an asynchronous timer or manually depressing the shutter twice. The dual-lens architecture also enables novel modes such as simultaneous near and far zoom capture of a 2D image. The remainder of the camera is similar to other compact digital cameras.
MasterImage 3D is a company that develops stereoscopic 3D systems for theaters, and auto-stereoscopic 3D displays for mobile devices.
FPR is a technology promoted by LG that is employed in its line of 3D televisions based on circular polarization. It shows left and right images through different patterns in a circular polarizer. Left/right polarized glasses allow the left and right images to then be seen by the left and right eyes separately. Both images are combined in the brain and generate the 3D effect. The FPR technology uses the precise film which polarizes different pixels differently to show a different image for each eye. FPR 3D tech is said to deliver a brighter screen with less cross talk, less ghosting, and no flickering.
A 3D display is multiscopic if it projects more than two images out into the world, unlike conventional 3D stereoscopy, which simulates a 3D scene by displaying only two different views of it, each visible to only one of the viewer's eyes. Multiscopic displays can represent the subject as viewed from a series of locations, and allow each image to be visible only from a range of eye locations narrower than the average human interocular distance of 63 mm. As a result, not only does each eye see a different image, but different pairs of images are seen from different viewing locations.
Stereo photography techniques are methods to produce stereoscopic images, videos and films. This is done with a variety of equipment including special built stereo cameras, single cameras with or without special attachments, and paired cameras. This involves traditional film cameras as well as, tape and modern digital cameras. A number of specialized techniques are employed to produce different kinds of stereo images.
A stereoscopic video game is a video game which uses stereoscopic technologies to create depth perception for the player by any form of stereo display. Such games should not be confused with video games that use 3D game graphics on a mono screen, which give the illusion of depth only by monocular cues but lack binocular depth information.
Vergence-accommodation conflict (VAC), also known as accommodation-vergence conflict, is a visual phenomenon that occurs when the brain receives mismatching cues between vergence and accommodation of the eye. This commonly occurs in virtual reality devices, augmented reality devices, 3D movies, and other types of stereoscopic displays and autostereoscopic displays. The effect can be unpleasant and cause eye strain.