Large-screen television technology

Last updated
A 140 cm (56 in) DLP rear-projection TV 2007TaipeiAudioVideoFair LaVEA DLPTV.jpg
A 140 cm (56 in) DLP rear-projection TV

Large-screen television technology (colloquially big-screen TV) developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to replace earlier flat-screen technologies in picture quality.

Contents

Large-screen technologies have almost completely displaced cathode-ray tubes (CRT) in television sales due to the necessary bulkiness of cathode-ray tubes. The diagonal screen size of a CRT television is limited to about 100 cm (40 in) because of size requirements of the cathode-ray tube, which fires three beams of electrons onto the screen to create a viewable image. A large-screen TV requires a longer tube, making a large-screen CRT TV of about 130 to 200 cm (50 to 80 in) unrealistic. Newer large-screen televisions are comparably thinner.

Viewing distances

Horizontal, vertical and diagonal field of view Angle of view.svg
Horizontal, vertical and diagonal field of view

Before deciding on a particular display technology size, it is very important to determine from what distances it is going to be viewed. As the display size increases so does the ideal viewing distance. Bernard J. Lechner, while working for RCA, studied the best viewing distances for various conditions and derived the so-called Lechner distance.

As a rule of thumb, the viewing distance should be roughly two to three times the screen size for standard definition (SD) displays. [1] [2] [3] [4] [5]

Screen size (in)Viewing distance (ft)Viewing distance (m)
15–265–81.5-2.4
26–328–11.52.4-3.5
32–4211.5–133.5-4
42–55>13>4

Display specifications

The following are important factors for evaluating television displays:

Display technologies

LCD television

A pixel on an LCD consists of multiple layers of components: two polarizing filters, two glass plates with electrodes, and liquid crystal molecules. The liquid crystals are sandwiched between the glass plates and are in direct contact with the electrodes. The two polarizing filters are the outer layers in this structure. The polarity of one of these filters is oriented horizontally, while the polarity of the other filter is oriented vertically. The electrodes are treated with a layer of polymer to control the alignment of liquid crystal molecules in a particular direction. These rod-like molecules are arranged to match the horizontal orientation on one side and the vertical orientation on the other, giving the molecules a twisted, helical structure. Twisted nematic liquid crystals are naturally twisted, and are commonly used for LCDs because they react predictably to temperature variation and electric current.

When the liquid crystal material is in its natural state, light passing through the first filter will be rotated (in terms of polarity) by the twisted molecule structure, which allows the light to pass through the second filter. When voltage is applied across the electrodes, the liquid crystal structure is untwisted to an extent determined by the amount of voltage. A sufficiently large voltage will cause the molecules to untwist completely, such that the polarity of any light passing through will not be rotated and will instead be perpendicular to the filter polarity. This filter will block the passage of light because of the difference in polarity orientation, and the resulting pixel will be black. The amount of light allowed to pass through at each pixel can be controlled by varying the corresponding voltage accordingly. In a color LCD each pixel consists of red, green, and blue subpixels, which require appropriate color filters in addition to the components mentioned previously. Each subpixel can be controlled individually to display a large range of possible colors for a particular pixel.

The electrodes on one side of the LCD are arranged in columns, while the electrodes on the other side are arranged in rows, forming a large matrix that controls every pixel. Each pixel is designated a unique row-column combination, and the pixel can be accessed by the control circuits using this combination. These circuits send charge down the appropriate row and column, effectively applying a voltage across the electrodes at a given pixel. Simple LCDs such as those on digital watches can operate on what is called a passive-matrix structure, in which each pixel is addressed one at a time. This results in extremely slow response times and poor voltage control. A voltage applied to one pixel can cause the liquid crystals at surrounding pixels to untwist undesirably, resulting in fuzziness and poor contrast in this area of the image. LCDs with high resolutions, such as large-screen LCD televisions, require an active-matrix structure. This structure is a matrix of thin-film transistors, each corresponding to one pixel on the display. The switching ability of the transistors allows each pixel to be accessed individually and precisely, without affecting nearby pixels. Each transistor also acts as a capacitor while leaking very little current, so it can effectively store the charge while the display is being refreshed.

The following are types of LC display technologies:

Plasma display

Composition of plasma display panel Plasma-display-composition.svg
Composition of plasma display panel

A plasma display is made up of many thousands of gas-filled cells that are sandwiched in between two glass plates, two sets of electrodes, dielectric material, and protective layers. The address electrodes are arranged vertically between the rear glass plate and a protective layer. This structure sits behind the cells in the rear of the display, with the protective layer in direct contact with the cells. On the front side of the display there are horizontal display electrodes that sit in between a magnesium-oxide (MgO) protective layer and an insulating dielectric layer. The MgO layer is in direct contact with the cells and the dielectric layer is in direct contact with the front glass plate. The horizontal and vertical electrodes form a grid from which each individual cell can be accessed. Each individual cell is walled off from surrounding cells so that activity in one cell does not affect another. The cell structure is similar to a honeycomb structure except with rectangular cells. [6] [7] [8] [9]

To illuminate a particular cell, the electrodes that intersect at the cell are charged by control circuitry and electric current flows through the cell, stimulating the gas (typically xenon and neon) atoms inside the cell. These ionized gas atoms, or plasmas, then release ultraviolet photons that interact with a phosphor material on the inside wall of the cell. The phosphor atoms are stimulated and electrons jump to higher energy levels. When these electrons return to their natural state, energy is released in the form of visible light. Every pixel on the display is made up of three subpixel cells. One subpixel cell is coated with red phosphor, another is coated with green phosphor, and the third cell is coated with blue phosphor. Light emitted from the subpixel cells is blended together to create an overall color for the pixel. The control circuitry can manipulate the intensity of light emitted from each cell, and therefore can produce a large gamut of colors. Light from each cell can be controlled and changed rapidly to produce a high-quality moving picture. [10] [11] [12] [13]

Projection television

A projection television uses a projector to create a small image from a video signal and magnify this image onto a viewable screen. The projector uses a bright beam of light and a lens system to project the image to a much larger size. A front-projection television uses a projector that is separate from the screen which could be a suitably prepared wall, and the projector is placed in front of the screen. The setup of a rear-projection television is similar to that of a traditional television in that the projector is contained inside the television box and projects the image from behind the screen.

Rear-projection television

The following are different types of rear-projection televisions, which differ based on the type of projector and how the image (before projection) is created:

  • CRT rear-projection television: Small cathode-ray tubes create the image in the same manner that a traditional CRT television does, which is by firing a beam of electrons onto a phosphor-coated screen; the image is projected onto a large screen. This is done to overcome the cathode-ray tube size limit which is about 100 cm (40 in), the maximum size for a normal direct-view-CRT television set (see image). The projection cathode-ray tubes can be arranged in various ways. One arrangement is to use one tube and three phosphor (red, green, blue) coatings. Alternatively, one black-and-white tube can be used with a spinning color wheel. A third option is to use three CRTs, one each for red, green, and blue.
  • LCD rear-projection television: A lamp transmits light through a small LCD chip made up of individual pixels to create an image. The LCD projector uses dichroic mirrors to take the light and create three separate red, green, and blue beams, which are then passed through three separate LCD panels. The liquid crystals are manipulated using electric current to control the amount of light passing through. The lens system combines the three color images and projects them.
  • DLP rear-projection television: A DLP projector creates an image using a digital micromirror device (DMD chip), which on its surface contains a large matrix of microscopic mirrors, each corresponding to one pixel (or sub-pixel) in an image. Each mirror can be tilted to reflect light such that the pixel appears bright, or the mirror can be tilted to direct light elsewhere (where it is absorbed) to make the pixel appear dark. Mirrors flip between light and dark positions, so subpixel brightness is controlled by proportionally varying the amount of time a mirror is in the bright position; its pulse-width modulation. The mirror is made of aluminum and is mounted on a torsion-supported yoke. There are electrodes on both sides of the yoke that control the tilt of the mirror using electrostatic attraction. The electrodes are connected to an SRAM cell located under each pixel, and charges from the SRAM cell move the mirrors. Color is created by a spinning color wheel (used with a single-chip projector) or a three-chip (red, green, blue) projector. The color wheel is placed between the lamp light source and the DMD chip such that the light passing through is colored and then reflected off the mirror array to determine brightness. A color wheel consists of a red, green, and blue sector, as well as a fourth sector to either control brightness or include a fourth color. This spinning color wheel in the single-chip arrangement can be replaced by red, green, and blue light-emitting diodes (LED). The three-chip projector uses a prism to split up the light into three beams (red, green, blue), each directed towards its own DMD chip. The outputs of the three DMD chips are recombined and then projected.

Laser Phosphor Display

In Laser Phosphor Display technology, first demonstrated in June 2010 at InfoComm, the image is provided by the use of lasers, which are located on the back of the television, reflected off a rapidly moving bank of mirrors to excite pixels on the television screen in a similar way to cathode-ray tubes. The mirrors reflect the laser beams across the screen and so produce the necessary number of image lines. The small layers of phosphors inside the glass emit red, green or blue light when excited by a soft UV laser. The laser can be varied in intensity or completely turned on or off without a problem, which means that a dark display would need less power to project its images.

Comparison of television display technologies

CRT

Though large-screen CRT TVs/monitors exist, the screen size is limited by their impracticality. The bigger the screen, the greater the weight, and the deeper the CRT. A typical 80 cm (32 in) television can weigh about 70 kg (150 lb) or more. The Sony PVM-4300 monitor weighed 200 kg (440 ⁠lb) and had the largest ever CRT with a 110 cm (43 in) diagonal display. [14] SlimFit televisions exist, but are not common.

LCD

Advantages
Disadvantages

Plasma display

Advantages
Disadvantages

Projection television

Front-projection television

Advantages
  • Significantly cheaper than flat-panel counterparts
  • Front-projection picture quality approaches that of movie theater
  • Front-projection televisions take up very little space because a projector screen is extremely slim, and even a suitably prepared wall can be used
  • Display size can be extremely large, typically limited by room height.
Disadvantages
  • Front-projection more difficult to set up because projector is separate and must be placed in front of the screen, typically on the ceiling
  • Lamp may need to be replaced after heavy usage
  • Image brightness is an issue, may require darkened room.

Rear-projection television

Advantages
  • Significantly cheaper than flat-panel counterparts
  • Projectors that are not phosphor-based (LCD/DLP) are not susceptible to burn-in
  • Rear-projection is not subject to glare
Disadvantages
  • Rear-projection televisions are much bulkier than flat-panel televisions
  • Lamp may need to be replaced after heavy usage
  • Rear-projection has smaller viewing angles than those of flat-panel displays

Comparison of different types of rear-projection televisions

CRT projector

Advantages:

Disadvantages:

LCD projector

Advantages:

Disadvantages:

DLP projector

Advantages:

Disadvantages:

See also

Related Research Articles

<span class="mw-page-title-main">Computer monitor</span> Computer output device

A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls.

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images or fixed images with low information content, which can be displayed or hidden. For instance: preset words, digits, and seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

<span class="mw-page-title-main">Plasma display</span> Type of flat panel display

A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large flat panel displays to be released to the public.

<span class="mw-page-title-main">Flat-panel display</span> Electronic display technology

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

<span class="mw-page-title-main">LCD projector</span> Type of video projector

An LCD projector is a type of video projector for displaying video, images or computer data on a screen or other flat surface. It is a modern equivalent of the slide projector or overhead projector. To display images, LCD projectors typically send light from a metal-halide lamp through a prism or series of dichroic filters that separates light to three polysilicon panels – one each for the red, green and blue components of the video signal. As polarized light passes through the panels, individual pixels can be opened to allow light to pass or closed to block the light. The combination of open and closed pixels can produce a wide range of colors and shades in the projected image.

<span class="mw-page-title-main">Video projector</span> Device that projects video onto a surface

A video projector is an image projector that receives a video signal and projects the corresponding image on a projection screen using a lens system. Video projectors use a very bright ultra-high-performance lamp, Xenon arc lamp, LED or solid state blue, RB, RGB or remote fiber optic RGB lasers to provide the illumination required to project the image, and most modern ones can correct any curves, blurriness, and other inconsistencies through manual settings. If a blue laser is used, a phosphor wheel is used to turn blue light into white light, which is also the case with white LEDs. A wheel is used in order to prolong the lifespan of the phosphor, as it is degraded by the heat generated by the laser diode. Remote fiber optic RGB laser racks can be placed far away from the projector, and several racks can be housed in a single, central room. Each projector can use up to two racks, and several monochrome lasers are mounted on each rack, the light of which is mixed and transmitted to the projector booth using optical fibers. Projectors using RB lasers use a blue laser with a phosphor wheel in conjunction with a conventional solid state red laser.

<span class="mw-page-title-main">Digital Light Processing</span> Set of chipsets

Digital Light Processing (DLP) is a set of chipsets based on optical micro-electro-mechanical technology that uses a digital micromirror device. It was originally developed in 1987 by Larry Hornbeck of Texas Instruments. While the DLP imaging device was invented by Texas Instruments, the first DLP-based projector was introduced by Digital Projection Ltd in 1997. Digital Projection and Texas Instruments were both awarded Emmy Awards in 1998 for the DLP projector technology. DLP is used in a variety of display applications from traditional static displays to interactive displays and also non-traditional embedded applications including medical, security, and industrial uses.

Flicker is a visible change in brightness between cycles displayed on video displays. It applies to the refresh interval on cathode ray tube (CRT) televisions and computer monitors, as well as plasma computer displays and televisions.

<span class="mw-page-title-main">Television set</span> Device for viewing computers screen and shows broadcast through satellites or cables

A television set or television receiver, more commonly called the television, TV, TV set, telly, tele, or tube, is a device that combines a tuner, display, and loudspeakers, for the purpose of viewing and hearing television broadcasts, or as a computer monitor. Introduced in the late 1920s in mechanical form, television sets became a popular consumer product after World War II in electronic form, using cathode ray tube (CRT) technology. The addition of color to broadcast television after 1953 further increased the popularity of television sets in the 1960s, and an outdoor antenna became a common feature of suburban homes. The ubiquitous television set became the display device for the first recorded media for consumer use in the 1970s, such as Betamax, VHS; these were later succeeded by DVD. It has been used as a display device since the first generation of home computers and dedicated video game consoles in the 1980s. By the early 2010s, flat-panel television incorporating liquid-crystal display (LCD) technology, especially LED-backlit LCD technology, largely replaced CRT and other display technologies. Modern flat panel TVs are typically capable of high-definition display and can also play content from a USB device. Starting in the late 2010s, most flat panel TVs began to offer 4K and 8K resolutions.

<span class="mw-page-title-main">LCD television</span> Television set with liquid-crystal display

Liquid-crystal-display televisions are television sets that use liquid-crystal displays to produce images. They are, by far, the most widely produced and sold television display type. LCD TVs are thin and light, but have some disadvantages compared to other display types such as high power consumption, poorer contrast ratio, and inferior color gamut.

A thin-film-transistor liquid-crystal display is a variant of a liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

<span class="mw-page-title-main">Surface-conduction electron-emitter display</span> CRT screen

A surface-conduction electron-emitter display (SED) is a display technology for flat panel displays developed by a number of companies. SEDs use nanoscopic-scale electron emitters to energize colored phosphors and produce an image. In a general sense, a SED consists of a matrix of tiny cathode-ray tubes, each "tube" forming a single sub-pixel on the screen, grouped in threes to form red-green-blue (RGB) pixels. SEDs combine the advantages of CRTs, namely their high contrast ratios, wide viewing angles, and very fast response times, with the packaging advantages of LCD and other flat panel displays. They also use much less power than an LCD television of the same size.

This is a comparison of various properties of different display technologies.

<span class="mw-page-title-main">Active shutter 3D system</span> Method of displaying stereoscopic 3D images

An active shutter 3D system is a technique of displaying stereoscopic 3D images. It works by only presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image.

<span class="mw-page-title-main">Screen burn-in</span> Disfigurement of an electronic display

Screen burn-in, image burn-in, ghost image, or shadow image, is a permanent discoloration of areas on an electronic display such as a cathode ray tube (CRT) in an old computer monitor or television set. It is caused by cumulative non-uniform use of the screen.

<span class="mw-page-title-main">CRT projector</span> Older type of video projector that uses small, high intensity CRTs as image generating elements

A CRT projector is a video projector that uses a small, high-brightness cathode ray tube (CRT) as the image generating element. The image is then focused and enlarged onto a screen using a lens kept in front of the CRT face. The first color CRT projectors came out in the early 1950s. Most modern CRT projectors are color and have three separate CRTs, and their own lenses to achieve color images. The red, green and blue portions of the incoming video signal are processed and sent to the respective CRTs whose images are focused by their lenses to achieve the overall picture on the screen. Various designs have made it to production, including the "direct" CRT-lens design, and the Schmidt CRT, which employed a phosphor screen that illuminates a perforated spherical mirror, all within an evacuated cathode ray tube.

<span class="mw-page-title-main">Rear-projection television</span>

Rear-projection television (RPTV) is a type of large-screen television display technology. Until approximately 2006, most of the relatively affordable consumer large screen TVs up to 100 in (250 cm) used rear-projection technology. A variation is a video projector, using similar technology, which projects onto a screen.

<span class="mw-page-title-main">LED-backlit LCD</span> Display technology implementation

An LED-backlit LCD is a liquid-crystal display that uses LEDs for backlighting instead of traditional cold cathode fluorescent (CCFL) backlighting. LED-backlit displays use the same TFT LCD technologies as CCFL-backlit LCDs, but offer a variety of advantages over them.

Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.

<span class="mw-page-title-main">3LCD</span> LCD projection color image generation technology

3LCD is the name and brand of a major LCD projection color image generation technology used in modern digital projectors. 3LCD technology was developed and refined by Japanese imaging company Epson in the 1980s and was first licensed for use in projectors in 1988. In January 1989, Epson launched its first 3LCD projector, the VPJ-700.

References

  1. EasternHiFi.co.nz - Plasma vs LCD - Size and Resolution Archived 2009-02-17 at the Wayback Machine
  2. EngadgetHD.com - 1080p charted: Viewing distance to screen size
  3. CNET - TV buying guide - Size up your screen
  4. Google Book Search - HWM Mar 2007
  5. Google Book Search - Ebony Oct 2007
  6. Afterdawn.com - Plasma display
  7. Gizmodo - Giz Explains: Plasma TV Basics
  8. HowStuffWorks - How Plasma Displays Work
  9. Google books - Phosphor handbook By William M. Yen, Shigeo Shionoya, Hajime Yamamoto
  10. Google books - Digital Signage Broadcasting By Lars-Ingemar Lundström
  11. Google books - Instrument Engineers' Handbook: Process control and optimization By Béla G. Lipták
  12. Google books - Computers, Software Engineering, and Digital Devices By Richard C. Dorf
  13. 1 2 3 PlasmaTVBuyingGuide.com - Plasma TV Screen Burn-In: Is It Still a Problem?
  14. Robertson, Adi (6 February 2018). "Inside the desperate fight to keep old TVs alive". The Verge.
  15. Williams, Martyn (27 February 2007). "LCD TVs Get Faster Refresh Rates". TechHive.
  16. 1 2 3 4 CNET Australia - Plasma vs. LCD: Which is right for you?
  17. 1 2 3 Crutchfield - LCD vs. Plasma
  18. HomeTheaterMag.com - Plasma Vs. LCD Archived 2009-09-07 at the Wayback Machine