Thin-film transistor

Last updated

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is made by thin film deposition. TFTs are grown on a supporting (but non-conducting) substrate, such as glass. This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer. [1] The traditional application of TFTs is in TFT liquid-crystal displays.

Contents

Design and manufacture

TFTs can be fabricated with a wide variety of semiconductor materials. Because it is naturally abundant and well understood, amorphous or polycrystalline silicon were (and still are) used as the semiconductor layer. However, because of the low mobility of amorphous silicon [2] and the large device-to-device variations found in polycrystalline silicon, [3] [4] [5] other materials have been studied for use in TFTs. These include cadmium selenide, [6] [7] metal oxides such as indium gallium zinc oxide (IGZO) or zinc oxide, [8] organic semiconductors, [9] carbon nanotubes, [10] or metal halide perovskites. [11]

Cross sectional diagram of 4 common thin film transistor structures Four Thin Film Transistor Architectures.png
Cross sectional diagram of 4 common thin film transistor structures

Because TFTs are grown on inert substrates, rather than on wafers, the semiconductor must be deposited in a dedicated process. A variety of techniques are used to deposit semiconductors in TFTs. These include chemical vapor deposition (CVD), atomic layer deposition (ALD), and sputtering. The semiconductor can also be deposited from solution, [12] via techniques such as printing [13] or spray coating. [14] Solution-based techniques are hoped to lead to low-cost, mechanically flexible electronics. [15] Because typical substrates will deform or melt at high temperatures, the deposition process must be carried out under relatively low temperatures compared to traditional electronic material processing. [16]

Some wide band gap semiconductors, most notable metal oxides, are optically transparent. [17] By also employing transparent substrates, such as glass, and transparent electrodes, such as indium tin oxide (ITO), some TFT devices can be designed to be completely optically transparent. [18] Such transparent TFTs (TTFTs) could be used to enable head-up displays (such as on a car windshield).The first solution-processed TTFTs, based on zinc oxide, were reported in 2003 by researchers at Oregon State University. [19] The Portuguese laboratory CENIMAT at the Universidade Nova de Lisboa has produced the world's first completely transparent TFT at room temperature. [20] CENIMAT also developed the first paper transistor, [21] which may lead to applications such as magazines and journal pages with moving images.

Many AMOLED displays use LTPO (Low-temperature Poly-Crystalline Silicon and Oxide) TFT transistors. These transistors offer stability at low refresh rates, and variable refresh rates, which allows for power saving displays that do not show visual artifacts. [22] [23] [24] Large OLED displays usually use AOS (amporphous oxide semiconductor) TFT transistors instead, also called oxide TFTs [25] and these are usually based on IGZO. [26]

Applications

The best known application of thin-film transistors is in TFT LCDs, an implementation of liquid-crystal display technology. Transistors are embedded within the panel itself, reducing crosstalk between pixels and improving image stability.

As of 2008, many color LCD TVs and monitors use this technology. TFT panels are frequently used in digital radiography applications in general radiography. A TFT is used in both direct and indirect capture[ jargon ] as a base for the image receptor in medical radiography.

As of 2013, all modern high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays. [27]

AMOLED displays also contain a TFT layer for active-matrix pixel addressing of individual organic light-emitting diodes.

The most beneficial aspect of TFT technology is its use of a separate transistor for each pixel on the display. Because each transistor is small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display.

Structure of a TFT-display matrix

This picture does not include the actual light-source (usually cold-cathode fluorescent lamps or white LEDs), just the TFT-display matrix.

History

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET in which germanium monoxide was used as a gate dielectric. Paul K. Weimer, also of RCA implemented Wallmark's ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. In 1966, T.P. Brody and H.E. Kunig at Westinghouse Electric fabricated indium arsenide (InAs) MOS TFTs in both depletion and enhancement modes. [28] [29] [30] [31] [32] [33]

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard J. Lechner of RCA Laboratories in 1968. [34] Lechner, F.J. Marlowe, E.O. Nester and J. Tults demonstrated the concept in 1968 with an 18x2 matrix dynamic scattering LCD that used standard discrete MOSFETs, as TFT performance was not adequate at the time. [35] In 1973, T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD). [31] [36] The Westinghouse group also reported on operational TFT electroluminescence (EL) in 1973, using CdSe. [37] Brody and Fang-Chen Luo demonstrated the first flat active-matrix liquid-crystal display (AM LCD) using CdSe in 1974, and then Brody coined the term "active matrix" in 1975. [34] However, mass production of this device was never realized, due to complications in controlling the compound semiconductor thin film material properties, and device reliability over large areas. [31]

A breakthrough in TFT research came with the development of the amorphous silicon (a-Si) TFT by P.G. le Comber, W.E. Spear and A. Ghaith at the University of Dundee in 1979. They reported the first functional TFT made from hydrogenated a-Si with a silicon nitride gate dielectric layer. [31] [38] The a-Si TFT was soon recognized as being more suitable for a large-area AM LCD. [31] This led to commercial research and development (R&D) of AM LCD panels based on a-Si TFTs in Japan. [39]

By 1982, pocket TVs based on AM LCD technology were developed in Japan. [40] In 1982, Fujitsu's S. Kawai fabricated an a-Si dot-matrix display, and Canon's Y. Okubo fabricated a-Si twisted nematic (TN) and guest-host LCD panels. In 1983, Toshiba's K. Suzuki produced a-Si TFT arrays compatible with CMOS (complementary metal–oxide–semiconductor) integrated circuits (ICs), Canon's M. Sugata fabricated an a-Si color LCD panel, and a joint Sanyo and Sanritsu team including Mitsuhiro Yamasaki, S. Suhibuchi and Y. Sasaki fabricated a 3-inch a-SI color LCD TV. [39]

The first commercial TFT-based AM LCD product was the 2.1-inch Epson [41] [42] [43] ET-10 [37] (Epson Elf), the first color LCD pocket TV, released in 1984. [44] In 1986, a Hitachi research team led by Akio Mimura demonstrated a low-temperature polycrystalline silicon (LTPS) process for fabricating n-channel TFTs on a silicon-on-insulator (SOI), at a relatively low temperature of 200 °C. [45] A Hosiden research team led by T. Sunata in 1986 used a-Si TFTs to develop a 7-inch color AM LCD panel, [46] and a 9-inch AM LCD panel. [47] In the late 1980s, Hosiden supplied monochrome TFT LCD panels to Apple Computer. [31] In 1988, a Sharp research team led by engineer T. Nagayasu used hydrogenated a-Si TFTs to demonstrate a 14-inch full-color LCD display, [34] [48] which convinced the electronics industry that LCD would eventually replace cathode-ray tube (CRT) as the standard television display technology. [34] The same year, Sharp launched TFT LCD panels for notebook PCs. [37] In 1992, Toshiba and IBM Japan introduced a 12.1-inch color SVGA panel for the first commercial color laptop by IBM. [37]

TFTs can also be made out of indium gallium zinc oxide (IGZO). TFT-LCDs with IGZO transistors first showed up in 2012, and were first manufactured by Sharp Corporation. IGZO allows for higher refresh rates and lower power consumption. [49] [50] In 2021, the first flexible 32-bit microprocessor was manufactured using IGZO TFT technology on a polyimide substrate. [51]

See also

Related Research Articles

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers to display information. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome.

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

An active-matrix liquid-crystal display (AMLCD) is a type of flat-panel display used in high-resolution TVs, computer monitors, notebook computers, tablet computers and smartphones with an LCD screen, due to low weight, very good image quality, wide color gamut and fast response time.

<span class="mw-page-title-main">Flat-panel display</span> Electronic display technology

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

Active matrix is a type of addressing scheme used in flat panel displays. It is a method of switching individual elements of a flat panel display, known as pixels. Each pixel is attached to a transistor and capacitor that actively maintain the pixel state while other pixels are being addressed, in contrast with the older passive matrix technology in which each pixel must maintain its state passively, without being driven by circuitry.

SiGe, or silicon–germanium, is an alloy with any molar ratio of silicon and germanium, i.e. with a molecular formula of the form Si1−xGex. It is commonly used as a semiconductor material in integrated circuits (ICs) for heterojunction bipolar transistors or as a strain-inducing layer for CMOS transistors. IBM introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in mixed-signal circuit and analog circuit IC design and manufacture. SiGe is also used as a thermoelectric material for high-temperature applications (>700 K).

Silicon on sapphire (SOS) is a hetero-epitaxial process for metal–oxide–semiconductor (MOS) integrated circuit (IC) manufacturing that consists of a thin layer of silicon grown on a sapphire wafer. SOS is part of the silicon-on-insulator (SOI) family of CMOS technologies.

A thin-film-transistor liquid-crystal display is a type of liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

<span class="mw-page-title-main">Fin field-effect transistor</span> Type of non-planar transistor

A fin field-effect transistor (FinFET) is a multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double or even multi gate structure. These devices have been given the generic name "FinFETs" because the source/drain region forms fins on the silicon surface. The FinFET devices have significantly faster switching times and higher current density than planar CMOS technology.

<span class="mw-page-title-main">Organic field-effect transistor</span> Type of field-effect transistor

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric. One of the benefits of OFETs, especially compared with inorganic TFTs, is their unprecedented physical flexibility, which leads to biocompatible applications, for instance in the future health care industry of personalized biomedicines and bioelectronics.

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"silicon dioxide"—"silicon", is a cross sectional structure of MOSFET (metal–oxide–semiconductor field-effect transistor), realized by P.C.Y. Chen of Fairchild Camera and Instrument in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and FloadiaArchived 2022-11-01 at the Wayback Machine.

Ghavam G. Shahidi is an Iranian-American electrical engineer and IBM Fellow. He is the director of Silicon Technology at the IBM Thomas J Watson Research Center. He is best known for his pioneering work in silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) technology since the late 1980s.

Indium gallium zinc oxide (IGZO) is a semiconducting material, consisting of indium (In), gallium (Ga), zinc (Zn) and oxygen (O). IGZO thin-film transistors (TFT) are used in the TFT backplane of flat-panel displays (FPDs). IGZO-TFT was developed by Hideo Hosono's group at Tokyo Institute of Technology and Japan Science and Technology Agency (JST) in 2003 and in 2004. IGZO-TFT has 20–50 times the electron mobility of amorphous silicon, which has often been used in liquid-crystal displays (LCDs) and e-papers. As a result, IGZO-TFT can improve the speed, resolution and size of flat-panel displays. It is currently used as the thin-film transistors for use in organic light-emitting diode (OLED) TV displays.

<span class="mw-page-title-main">AMOLED</span> Display technology for use in mobile devices and televisions

AMOLED is a type of OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.

<span class="mw-page-title-main">Oxide thin-film transistor</span>

An oxide thin-film transistor or metal oxide thin film transistor is a type of thin film transistor where the semiconductor is a metal oxide compound. An oxide TFT is distinct from a metal oxide field effect transistor (MOSFET) where the word "oxide" refers to the insulating gate dielectric. In an oxide TFT, the word oxide refers to the semiconductor. Oxide TFTs have applications as amplifiers to deliver current to emitters in display backplanes.

<span class="mw-page-title-main">Depletion and enhancement modes</span> Two major types of field effect transistors

In field-effect transistors (FETs), depletion mode and enhancement mode are two major transistor types, corresponding to whether the transistor is in an on state or an off state at zero gate–source voltage.

<span class="mw-page-title-main">T. Peter Brody</span> Hungarian-British physicist

T. P. "Peter" Brody was a British-naturalised physicist and the co-inventor of Active Matrix Thin-Film Transistor display technology together with Fang-Chen Luo, having produced the world's first Active Matrix Liquid Crystal Display (AM-LCD) in 1972 and the first functional AM-EL in 1973 while employed by Westinghouse Electric Corporation in Pittsburgh. Brody coined the term "active matrix" and first used it in a published journal article in 1975.

Low-temperature polycrystalline silicon (LTPS) is polycrystalline silicon that has been synthesized at relatively low temperatures compared to traditional methods. LTPS is important for display industries, since the use of large glass panels prohibits exposure to deformative high temperatures. More specifically, the use of polycrystalline silicon in thin-film transistors (LTPS-TFT) has high potential for large-scale production of electronic devices like flat panel LCD displays or image sensors.

<span class="mw-page-title-main">Amorphous silicon</span> Non-crystalline silicon

Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs.

References

  1. Sze, S.M.; Ng, Kwok K. (2006-04-10). Physics of Semiconductor Devices. doi:10.1002/0470068329. ISBN   9780470068328.
  2. Powell, M.J. (1989). "The physics of amorphous-silicon thin-film transistors". IEEE Transactions on Electron Devices. 36 (12): 2753–2763. Bibcode:1989ITED...36.2753P. doi:10.1109/16.40933. ISSN   1557-9646.
  3. Rana, V.; Ishihara, R.; Hiroshima, Y.; Abe, D.; Inoue, S.; Shimoda, T.; Metselaar, W.; Beenakker, K. (2005). "Dependence of single-crystalline Si TFT characteristics on the channel position inside a location-controlled grain". IEEE Transactions on Electron Devices. 52 (12): 2622–2628. Bibcode:2005ITED...52.2622R. doi:10.1109/TED.2005.859689. ISSN   1557-9646. S2CID   12660547.
  4. Kimura, Mutsumi; Nozawa, Ryoichi; Inoue, Satoshi; Shimoda, Tatsuya; Lui, Basil; Tam, Simon Wing-Bun; Migliorato, Piero (2001-09-01). "Extraction of Trap States at the Oxide-Silicon Interface and Grain Boundary for Polycrystalline Silicon Thin-Film Transistors". Japanese Journal of Applied Physics. 40 (9R): 5227. Bibcode:2001JaJAP..40.5227K. doi:10.1143/jjap.40.5227. ISSN   0021-4922. S2CID   250837849.
  5. Lui, Basil; Tam, S. W.-B.; Migliorato, P.; Shimoda, T. (2001-06-01). "Method for the determination of bulk and interface density of states in thin-film transistors". Journal of Applied Physics. 89 (11): 6453–6458. Bibcode:2001JAP....89.6453L. doi:10.1063/1.1361244. ISSN   0021-8979.
  6. Brody, T. Peter (November 1984). "The Thin Film Transistor - A Late Flowering Bloom". IEEE Transactions on Electron Devices. 31 (11): 1614–1628. Bibcode:1984ITED...31.1614B. doi:10.1109/T-ED.1984.21762. S2CID   35904114.
  7. Brody, T. Peter (1996). "The birth and early childhood of active matrix - a personal memoir". Journal of the SID. 4/3: 113–127.
  8. Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard (2016-06-01). "Metal oxide semiconductor thin-film transistors for flexible electronics". Applied Physics Reviews. 3 (2): 021303. Bibcode:2016ApPRv...3b1303P. doi:10.1063/1.4953034. hdl: 20.500.11850/117450 .
  9. Lamport, Zachary A.; Haneef, Hamna F.; Anand, Sajant; Waldrip, Matthew; Jurchescu, Oana D. (2018-08-17). "Tutorial: Organic field-effect transistors: Materials, structure and operation". Journal of Applied Physics. 124 (7): 071101. Bibcode:2018JAP...124g1101L. doi:10.1063/1.5042255. ISSN   0021-8979. S2CID   116392919.
  10. Jariwala, Deep; Sangwan, Vinod K.; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C. (2013-03-11). "Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing". Chemical Society Reviews. 42 (7): 2824–2860. arXiv: 1402.0046 . doi:10.1039/C2CS35335K. ISSN   1460-4744. PMID   23124307. S2CID   26123051.
  11. Lin, Yen-Hung; Pattanasattayavong, Pichaya; Anthopoulos, Thomas D. (2017). "Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities". Advanced Materials. 29 (46): 1702838. Bibcode:2017AdM....2902838L. doi:10.1002/adma.201702838. hdl: 10754/625882 . ISSN   1521-4095. PMID   29024040. S2CID   205281664.
  12. Thomas, Stuart R.; Pattanasattayavong, Pichaya; Anthopoulos, Thomas D. (2013-07-22). "Solution-processable metal oxide semiconductors for thin-film transistor applications". Chemical Society Reviews. 42 (16): 6910–6923. doi:10.1039/C3CS35402D. ISSN   1460-4744. PMID   23770615.
  13. Teichler, Anke; Perelaer, Jolke; Schubert, Ulrich S. (2013-02-14). "Inkjet printing of organic electronics – comparison of deposition techniques and state-of-the-art developments". Journal of Materials Chemistry C. 1 (10): 1910–1925. doi:10.1039/C2TC00255H. ISSN   2050-7534.
  14. Bashir, Aneeqa; Wöbkenberg, Paul H.; Smith, Jeremy; Ball, James M.; Adamopoulos, George; Bradley, Donal D. C.; Anthopoulos, Thomas D. (2009). "High-Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere". Advanced Materials. 21 (21): 2226–2231. Bibcode:2009AdM....21.2226B. doi:10.1002/adma.200803584. hdl: 10044/1/18897 . ISSN   1521-4095. S2CID   137260075.
  15. Bonnassieux, Yvan; Brabec, Christoph J.; Cao, Yong; Carmichael, Tricia Breen; Chabinyc, Michael L.; Cheng, Kwang-Ting; Cho, Gyoujin; Chung, Anjung; Cobb, Corie L.; Distler, Andreas; Egelhaaf, Hans-Joachim (2021). "The 2021 flexible and printed electronics roadmap". Flexible and Printed Electronics. 6 (2): 023001. doi:10.1088/2058-8585/abf986. hdl: 10754/669780 . ISSN   2058-8585. S2CID   235288433.
  16. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer International Publishing. ISBN   978-3-319-00001-5.
  17. Kamiya, Toshio; Hosono, Hideo (2010). "Material characteristics and applications of transparent amorphous oxide semiconductors". NPG Asia Materials. 2 (1): 15–22. doi: 10.1038/asiamat.2010.5 . ISSN   1884-4057.
  18. Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo (2003-05-23). "Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor". Science. 300 (5623): 1269–1272. Bibcode:2003Sci...300.1269N. doi:10.1126/science.1083212. PMID   12764192. S2CID   20791905.
  19. Wager, John. OSU Engineers Create World's First Transparent Transistor Archived 2007-09-15 at the Wayback Machine . College of Engineering, Oregon State University, Corvallis, OR: OSU News & Communication, 2003. 29 July 2007.
  20. Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Pereira, L. M. N.; Martins, R. F. P. (March 2005). "Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature". Advanced Materials. 17 (5): 590–594. Bibcode:2005AdM....17..590F. doi:10.1002/adma.200400368. S2CID   137441513.
  21. Fortunato, E.; Correia, N.; Barquinha, P.; Pereira, L.; Goncalves, G.; Martins, R. (September 2008). "High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper" (PDF). IEEE Electron Device Letters . 29 (9): 988–990. Bibcode:2008IEDL...29..988F. doi:10.1109/LED.2008.2001549. hdl: 10362/3242 . S2CID   26919164.
  22. Chang, Ting-Kuo; Lin, Chin-Wei; Chang, Shihchang (2019). "39-3: Invited Paper: LTPO TFT Technology for AMOLEDs". Sid Symposium Digest of Technical Papers. 50: 545–548. doi:10.1002/sdtp.12978. S2CID   191192447.
  23. Chen, Qian; Su, Yue; Shi, Xuewen; Liu, Dongyang; Gong, Yuxin; Duan, Xinlv; Ji, Hansai; Geng, Di; Li, Ling; Liu, Ming (2019). "P-1.1: A New Compensation Pixel Circuit with LTPO TFTS". Sid Symposium Digest of Technical Papers. 50: 638–639. doi:10.1002/sdtp.13595. S2CID   210522411.
  24. Luo, Haojun; Wang, Shaowen; Kang, Jiahao; Wang, Yu-Min; Zhao, Jigang; Tsong, Tina; Lu, Ping; Gupta, Amit; Hu, Wenbing; Wu, Huanda; Zhang, Shengwu; Kim, Jiha; Chiu, Chang Ming; Lee, Bong-Geum; Yuan, Ze; Yu, Xiaojun (2020). "24-3: Complementary LTPO Technology, Pixel Circuits and Integrated Gate Drivers for AMOLED Displays Supporting Variable Refresh Rates". Sid Symposium Digest of Technical Papers. 51: 351–354. doi:10.1002/sdtp.13876. S2CID   225488161.
  25. Wager, John F. "Advancements and Opportunities for Improvement" (PDF).
  26. Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS. John Wiley & Sons. 11 October 2022. ISBN   978-1-119-86958-0.
  27. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. p. 74. ISBN   9783319000022.
  28. Woodall, Jerry M. (2010). Fundamentals of III-V Semiconductor MOSFETs. Springer. pp. 2–3. ISBN   9781441915474.
  29. Brody, T. P.; Kunig, H. E. (October 1966). "A HIGH-GAIN InAs THIN-FILM TRANSISTOR". Applied Physics Letters. 9 (7): 259–260. Bibcode:1966ApPhL...9..259B. doi: 10.1063/1.1754740 . ISSN   0003-6951.
  30. Weimer, Paul K. (June 1962). "The TFT A New Thin-Film Transistor". Proceedings of the IRE . 50 (6): 1462–9. doi:10.1109/JRPROC.1962.288190. ISSN   0096-8390. S2CID   51650159.
  31. 1 2 3 4 5 6 Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi: 10.1149/2.F06131if . ISSN   1064-8208.
  32. Lojek, Bo (2007). History of Semiconductor Engineering. Springer. pp. 322–4. ISBN   978-3540342588.
  33. Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". IEEE Annals of the History of Computing. 12 (1): 60–73.
  34. 1 2 3 4 Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN   1551-319X.
  35. Castellano, Joseph A. (2005). Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific. pp. 41–2. ISBN   9789812389565.
  36. Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". IEEE Transactions on Electron Devices . 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN   0018-9383.
  37. 1 2 3 4 Souk, Jun; Morozumi, Shinji; Luo, Fang-Chen; Bita, Ion (2018). Flat Panel Display Manufacturing. Wiley. pp. 2–3. ISBN   9781119161356.
  38. Comber, P. G. le; Spear, W. E.; Ghaith, A. (1979). "Amorphous-silicon field-effect device and possible application". Electronics Letters . 15 (6): 179–181. Bibcode:1979ElL....15..179L. doi:10.1049/el:19790126. ISSN   0013-5194.
  39. 1 2 Castellano, Joseph A. (2005). Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific. pp. 180, 181, 188. ISBN   9789812565846.
  40. Morozumi, Shinji; Oguchi, Kouichi (12 October 1982). "Current Status of LCD-TV Development in Japan". Molecular Crystals and Liquid Crystals. 94 (1–2): 43–59. doi:10.1080/00268948308084246. ISSN   0026-8941.
  41. US6580129B2,Lui, Basil; Migliorato, Piero& Yudasaka, Ichioet al.,"Thin-film transistor and its manufacturing method",issued 2003-06-17
  42. US6548356B2,Lui, Basil; Migliorato, Piero& Yudasaka, Ichioet al.,"Thin film transistor",issued 2003-04-15
  43. Kimura, Mutsumi; Inoue, Satoshi; Shimoda, Tatsuya; Lui, Basil; French, William; Kamohara, Itaru; Migliorato, Piero (2001). "Development of poly-Si TFT models for device simulation: In-plane trap model and thermionic emission model". SID Conference Record of the International Display Research Conference (in Japanese): 423–426. ISSN   1083-1312.
  44. "ET-10". Epson . Retrieved 29 July 2019.
  45. Mimura, Akio; Oohayashi, M.; Ohue, M.; Ohwada, J.; Hosokawa, Y. (1986). "SOI TFT's with directly contacted ITO". IEEE Electron Device Letters. 7 (2): 134–6. Bibcode:1986IEDL....7..134M. doi:10.1109/EDL.1986.26319. ISSN   0741-3106. S2CID   36089445.
  46. Sunata, T.; Yukawa, T.; Miyake, K.; Matsushita, Y.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A large-area high-resolution active-matrix color LCD addressed by a-Si TFT's". IEEE Transactions on Electron Devices . 33 (8): 1212–1217. Bibcode:1986ITED...33.1212S. doi:10.1109/T-ED.1986.22644. ISSN   0018-9383. S2CID   44190988.
  47. Sunata, T.; Miyake, K.; Yasui, M.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A 640 × 400 pixel active-matrix LCD using a-Si TFT's". IEEE Transactions on Electron Devices. 33 (8): 1218–21. Bibcode:1986ITED...33.1218S. doi:10.1109/T-ED.1986.22645. ISSN   0018-9383. S2CID   6356531.
  48. Nagayasu, T.; Oketani, T.; Hirobe, T.; Kato, H.; Mizushima, S.; Take, H.; Yano, K.; Hijikigawa, M.; Washizuka, I. (October 1988). "A 14-in.-diagonal full-color a-Si TFT LCD". Conference Record of the 1988 International Display Research Conference. pp. 56–58. doi:10.1109/DISPL.1988.11274. S2CID   20817375.
  49. Orland, Kyle (August 8, 2019). "What Sharp's IGZO display technology will mean for the Nintendo Switch". Ars Technica.
  50. "IGZO Display Technology - Sharp". www.sharpsma.com.
  51. Biggs, John; et al. (July 21, 2021). "A natively flexible 32-bit Arm microprocessor". Nature. 595 (7868): 532–6. Bibcode:2021Natur.595..532B. doi: 10.1038/s41586-021-03625-w . PMID   34290427.