Beam tetrode

Last updated
Radial beam power tetrode, designed for radio frequency use. This type of beam power tube does not use beam confining plates. Eimac.jpg
Radial beam power tetrode, designed for radio frequency use. This type of beam power tube does not use beam confining plates.
6L6 type beam tetrode electrode structures with anode cut open. The beam confining plates are the silver coloured structures to the left and right VacuumTubeGuts.agr.jpg
6L6 type beam tetrode electrode structures with anode cut open. The beam confining plates are the silver coloured structures to the left and right
Comparison of anode characteristic of beam power tube and power pentode TM 11-662 FIGURE 85-en.svg
Comparison of anode characteristic of beam power tube and power pentode
Twin beam tetrode RCA-815, used as the bias oscillator tube in the Ampex Model 300 "bathtub" 1/4" full-track professional audio tape recorder RCA-815.JPG
Twin beam tetrode RCA-815, used as the bias oscillator tube in the Ampex Model 300 "bathtub" 1/4" full-track professional audio tape recorder
Internal Construction of 4CX250B radial beam power tetrode. Anode structure with attached cooling fins top left, cathode and control grid structure top right, screen grid bottom. Note absence of beam plates, cylindrical symmetry, and slotted screw holes, allowing alignment of the screen grid during manufacture.Inset: Complete valve. 4cx250b internal structure-2.jpg
Internal Construction of 4CX250B radial beam power tetrode. Anode structure with attached cooling fins top left, cathode and control grid structure top right, screen grid bottom. Note absence of beam plates, cylindrical symmetry, and slotted screw holes, allowing alignment of the screen grid during manufacture.Inset: Complete valve.

A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. [1] [2] Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage. [3] The first beam tetrode marketed was the Marconi N40, introduced in 1935. [4] [5] Beam tetrodes manufactured and used in the 21st century include the 4CX250B, KT66 and variants of the 6L6.

Contents

History

In amplifier circuits, the useful anode voltage - anode current region of operation of the conventional tetrode tube was limited by the detrimental effect of secondary emission from the anode at anode potentials less than that of the screen grid. [6] The detrimental effect of anode secondary emission was solved by Philips/Mullard with the introduction of a suppressor grid, which resulted in the pentode design. Since Philips held a patent on this design, other manufacturers were keen to produce pentode type tubes without infringing the patent. In the UK, three EMI engineers (Isaac Shoenberg, Cabot Bull and Sidney Rodda) filed a patent on an alternative design in 1933. [7] Their design had the following features (compared to the normal pentode):

The design is today known as the beam tetrode but historically was also known as a kinkless tetrode, since it had the same number of grids as the conventional tetrode but without the negative resistance kink in the anode current vs anode voltage characteristic curves of a true tetrode. Some authors, notably outside the United Kingdom, argue that the beam plates constitute a fifth electrode. [12] [13]

The EMI design had the following advantages over the pentode:

The new tube was introduced at the Physical and Optical Societies' Exhibition in January 1935 as the Marconi N40. [4] Around one thousand of the N40 output tetrodes were produced, but MOV (Marconi-Osram Valve) company, under the joint ownership of EMI and GEC, considered the design too difficult to manufacture due to the need for good alignment of the grid wires. [5] As MOV had a design-share agreement with RCA of America, the design was passed to that company. RCA had the resources to produce a workable design, which resulted in the 6L6. Not long after, the beam tetrode appeared in a variety of offerings, including the 6V6 in December 1936, the MOV KT66 in 1937 and the KT88 in 1956, designed specifically for audio and highly prized by collectors today.

After the Phillips patent on the suppressor grid had expired, many beam tetrodes were referred to as "beam power pentodes". In addition, there were some examples of beam tetrodes designed to work in place of pentodes. The ubiquitous EL34, although manufactured by Mullard/Phillips and other European manufacturers as a true pentode, was also produced by other manufacturers (namely GE, Sylvania, and MOV) as a beam tetrode instead. The 6CA7 as manufactured by Sylvania and GE is a beam tetrode drop-in replacement for an EL34, and the KT77 is a similar design to the 6CA7 made by MOV.

A beam tetrode family widely used in the US comprised the 25L6, 35L6, and 50L6, and their miniature versions the 50B5 and 50C5. This family is not to be confused with the 6L6 despite similar designations. They were used in millions of All American Five AM radio receivers. Most of these used a transformerless power supply circuit. In American radio receivers with transformer power supplies, built from about 1940–1950, the 6V6, 6V6G, 6V6GT and miniature 6AQ5 beam tetrodes were very commonly used.

In military equipment, the 807 and 1625, with rated anode dissipations of 25 watts and operating from a supply of up to 750 volts, were in widespread use as the final amplifier in radio-frequency transmitters of up to 50 watts output power and in push-pull applications for audio. These tubes were very similar to a 6L6 but had a somewhat higher anode dissipation rating and the anode was connected to the top cap instead of a pin at the base. Large numbers entered the market after World War II and were used widely by radio amateurs in the USA and Europe through the 1950s and 1960s.

In the 1950s, the ultra-linear audio amplifier circuit was developed for beam tetrodes. [16] This amplifier circuit links the screen grids to taps on the output transformer, and provides reduced intermodulation distortion.

Operation

The beam tetrode eliminates the dynatron region or tetrode kink of the screen grid tube by developing a low potential space charge region between the screen grid and anode that returns anode secondary emission electrons to the anode. The anode characteristic of the beam tetrode is less rounded at lower anode voltages than that of the power pentode, resulting in greater power output and less third harmonic distortion with the same anode supply voltage. [17]

In beam tetrodes, the apertures of the control grid and the screen grid are aligned. The wires of the screen grid are aligned with those of the control grid so that the screen grid lies in the shadow of the control grid. This reduces the screen grid current, contributing to the tube's greater power conversion efficiency. Alignment of the grid apertures concentrates the electrons into dense beams in the space between the screen grid and the anode, permitting the anode to be placed closer to the screen grid than would be possible without the beam density. [18] The intense negative space charge of these beams developed when the anode potential is less than that of the screen grid prevents secondary electrons from the anode from reaching the screen grid.

In receiving type beam tetrodes, beam confining plates are introduced outside of the beam region to constrain the electron beams to certain sectors of the anode which are sections of a cylinder. [19] These beam confining plates also set up a low electrostatic potential region between the screen grid and anode and return anode secondary electrons from outside of the beam region to the anode.

In beam tetrodes that have complete cylindrical symmetry, a kinkless characteristic can be achieved without the need for beam confining plates. [2] [20] This form of construction is usually adopted in larger tubes with an anode power rating of 100W or more. The Eimac 4CX250B (rated at 250W anode dissipation) is an example of this class of beam tetrode. Note that a radically different approach is taken to the design of the support system for the electrodes in these types. The 4CX250B is described by its manufacturer as a 'radial beam power tetrode, drawing attention to the symmetry of its electrode system.

Beam tetrode application circuits often include components to prevent spurious oscillation, suppress transient voltages and smooth out frequency response. [21] [22] [23] In radio frequency applications, shielding is required between the plate circuit components and grid circuit components. [24]

Dissection of a beam tetrode

Parts of a small receiving-type beam tetrodePictures
The glass envelope has been removed. View of the tube base, anode or plate and getter pan. The anode is the large, gray colored, cylindrical structure. The getter pan is the cup-shaped part at the top. The getter is a powdered metal (Barium) that reacts strongly to oxygen. After the tube is sealed, the getter pan is inductively heated to vaporize the getter, which is deposited on the inside of the glass envelope. 6P1P vacuum tube teardown 01.jpg
Half of the anode has been removed. The two mica discs that support the electrodes at the top and bottom can be seen. The tall, vertically oriented, silver colored electrode on the left is one of the beam confining or beam forming plates. The screen grid is inside of the beam confining plates. 6P1P vacuum tube teardown 02.jpg
The anode has been removed completely. The beam confining plates can be seen to the right and left of the grids. The screen grid is the outermost grid. Between the screen grid and the cathode is the control grid. 6P1P vacuum tube teardown 03.jpg
The beam confining plates have been removed. 6P1P vacuum tube teardown 04.jpg
The getter pan, getter pan supports and the upper mica disc have been removed. The elliptical helix of the screen grid surrounds the control grid. The screen grid support rods are on the left and right outside of the control grid support rods. 6P1P vacuum tube teardown 06.jpg
The screen grid and its support rods have been removed. The elliptical helix of the control grid surrounds the cathode; the control grid support rods are on the left and right of the cathode. 6P1P vacuum tube teardown 07.jpg
The control grid and its support rods have been removed. The indirectly heated cathode surrounds the heater. The electron emitting portion of the cathode is the white-colored oxide coating, typically barium oxide or strontium oxide. 6P1P vacuum tube teardown 08.jpg
The cathode has been removed. The heater is tungsten wire coated with a refractory dielectric material of high thermal conductivity. 6P1P vacuum tube teardown 09.jpg


Related Research Articles

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention helped make amplified radio technology and long-distance telephony possible. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids, and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Pentagrid converter</span> Frequency mixer of a superhet radio

The pentagrid converter is a type of radio receiving valve with five grids used as the frequency mixer stage of a superheterodyne radio receiver.

<span class="mw-page-title-main">Control grid</span> Electrode used to control electron flow within a vacuum tube

The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).

A suppressor grid is a wire screen used in a thermionic valve to suppress secondary emission. It is also called the antidynatron grid, as it reduces or prevents dynatron oscillations. It is located between the screen grid and the plate electrode (anode). The suppressor grid is used in the pentode vacuum tube, so called because it has five concentric electrodes: cathode, control grid, screen grid, suppressor grid, and plate, and also in other tubes with more grids, such as the hexode. The suppressor grid and pentode tube were invented in 1926 by Gilles Holst and Bernard D. H. Tellegen at Phillips Electronics.

<span class="mw-page-title-main">Dynatron oscillator</span> Vacuum tube electronic oscillator circuit

In electronics, the dynatron oscillator, invented in 1918 by Albert Hull at General Electric, is an obsolete vacuum tube electronic oscillator circuit which uses a negative resistance characteristic in early tetrode vacuum tubes, caused by a process called secondary emission. It was the first negative resistance vacuum tube oscillator. The dynatron oscillator circuit was used to a limited extent as beat frequency oscillators (BFOs), and local oscillators in vacuum tube radio receivers as well as in scientific and test equipment from the 1920s to the 1940s but became obsolete around World War 2 due to the variability of secondary emission in tubes.

<span class="mw-page-title-main">KT66</span>

KT66 is the designator for a beam power tube introduced by Marconi-Osram Valve Co. Ltd. (M-OV) of Britain in 1937 and marketed for application as a power amplifier for audio frequencies and driver for radio frequencies. The KT66 is a beam tetrode that utilizes partially collimated electron beams to form a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over comparable power pentodes. In the 21st century, the KT66 is manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.

<span class="mw-page-title-main">6L6</span> Vacuum tube

6L6 is the designator for a beam power tube introduced by Radio Corporation of America in April 1936 and marketed for application as a power amplifier for audio frequencies. The 6L6 is a beam tetrode that utilizes formation of a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over power pentodes. The 6L6 was the first successful beam power tube marketed. In the 21st century, variants of the 6L6 are manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.

<span class="mw-page-title-main">Pentode</span> Vacuum tube with five electrodes

A pentode is an electronic device having five electrodes. The term most commonly applies to a three-grid amplifying vacuum tube or thermionic valve that was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode was developed from the screen-grid tube or shield-grid tube by the addition of a grid between the screen grid and the plate. The screen-grid tube was limited in performance as an amplifier due to secondary emission of electrons from the plate. The additional grid is called the suppressor grid. The suppressor grid is usually operated at or near the potential of the cathode and prevents secondary emission electrons from the plate from reaching the screen grid. The addition of the suppressor grid permits much greater output signal amplitude to be obtained from the plate of the pentode in amplifier operation than from the plate of the screen-grid tube at the same plate supply voltage. Pentodes were widely manufactured and used in electronic equipment until the 1960s to 1970s, during which time transistors replaced tubes in new designs. During the first quarter of the 21st century, a few pentode tubes have been in production for high power radio frequency applications, musical instrument amplifiers, home audio and niche markets.

<span class="mw-page-title-main">EL34</span> Vacuum tube (valve)

The EL34 is a thermionic vacuum tube of the power pentode type. The EL34 was introduced in 1955 by Mullard, who were owned by Philips. The EL34 has an octal base and is found mainly in the final output stages of audio amplification circuits; it was also designed to be suitable as a series regulator by virtue of its high permissible voltage between heater and cathode and other parameters. The American RETMA tube designation number for this tube is 6CA7. The USSR analog was 6P27S.

<span class="mw-page-title-main">Single-ended triode</span> Vacuum tube electronic amplifier that uses a single triode to produce an output

A single-ended triode (SET) is a vacuum tube electronic amplifier that uses a single triode to produce an output, in contrast to a push-pull amplifier which uses a pair of devices with antiphase inputs to generate an output with the wanted signals added and the distortion components subtracted. Single-ended amplifiers normally operate in Class A; push-pull amplifiers can also operate in Classes AB or B without excessive net distortion, due to cancellation.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(deit) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(frnl), RCA (us), RFT(desv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

<span class="mw-page-title-main">Valve transmitters</span>

Most high power transmitter amplifiers are of valve construction because of the high power required.

The KT88 is a beam tetrode/kinkless tetrode vacuum tube for audio amplification.

Ultra-linear electronic circuits are those used to couple a tetrode or pentode vacuum-tube to a load.

<span class="mw-page-title-main">Valve RF amplifier</span> Device for electrically amplifying the power of an electrical radio frequency signal

A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

References

  1. Donovan P. Geppert, (1951) Basic Electron Tubes, New York: McGraw-Hill, pp. 164 - 179. Retrieved 10 June 2021
  2. 1 2 Winfield G. Wagener, (May 1948) "500-Mc. Transmitting Tetrode Design Considerations", Proceedings of the I.R.E., pp. 612, 617. Retrieved 10 June 2021
  3. Norman H. Crowhurst, (1959) basic audio vol. 2, New York: John F. Rider Publisher Inc., pp. 2-74 - 2-76. Retrieved 7 Oct. 2021
  4. 1 2 3 Editors, (Feb. 1935) "New Output Tetrode", Electronics, vol. 8 no.2, p. 65. Retrieved 10 June 2021
  5. 1 2 K. R. Thrower, (2009) British Radio Valves The Classic Years: 1926-1946, Reading, UK: Speedwell, pp. 125 - 126
  6. John F. Rider, (1945) Inside the Vacuum Tube, New York: John F. Rider Publisher Inc., pp. 287 - 294. Retrieved 10 June 2021
  7. Schoenberg, Rodda, Bull, (1935) Improvements in and relating to thermionic valves, GB patent 423,932
  8. 1 2 Schoenberg, Rodda, Bull, (1938) Electron discharge device, US patent 2,107,519
  9. Geppert (1951) p. 164
  10. Herbert J. Reich, Principles of Electron Tubes, McGraw-Hill, 1941, p. 72, Retrieved 10 June 2021
  11. A. H. W. Beck, (1953) Thermionic Valves, Their Theory and Design, London: Cambridge University Press, p. 295. Retrieved 10 June 2021
  12. Jeffrey Falla; Aurora Johnson (3 February 2011). How to Hot Rod Your Fender Amp: Modifying Your Amplifier for Magical Tone. Voyageur Press. pp. 178–. ISBN   978-0-7603-3847-6 . Retrieved 6 April 2012.
  13. Stanley William Amos; Roger S. Amos; Geoffrey William Arnold Dummer (1999). Newnes Dictionary of Electronics. Newnes. pp. 318–. ISBN   978-0-7506-4331-3 . Retrieved 6 April 2012.
  14. 1 2 Geppert (1951) p. 169
  15. F. Langford-Smith ed. (1952). Radiotron Designer's Handbook 4th ed.. Sydney: Wireless Press. p. 569:
  16. Hafler, David; Keroes, Herbert I (November 1951), "An Ultra-Linear Amplifier" (PDF), Audio Engineering: 15–17, archived from the original (PDF) on March 29, 2016 Alt URL.
  17. J. F. Dreyer Jr. (April 1936). "The Beam Power Output Tube". New York: McGraw-Hill. Electronics p. 21. Retrieved 7 May 2023.
  18. Starr, A. T. (1953). Radio and Radar Technique. London: Sir Issac Pitman & Sons. p. 302. Retrieved 7 May 2023.
  19. Schade, O.S. (1938). Beam Power Tubes (PDF). Harrison, NJ. p. 162.{{cite book}}: CS1 maint: location missing publisher (link)
  20. A. K. Wing Jr.; J. E. Young (Jan. 1941). "A New Ultra-High-Frequency Tetrode and It Use in a 1-Kilowatt Television Sound Transmitter". Proceedings of the IRE, pp. 5 - 7. Retrieved 14 Aug. 2022.
  21. L. C. Hollands (Mar. 1939). "Circuit Design Related to Tube Performance". Electronics. pp. 18 - 20. Retrieved 2 Oct. 2021.
  22. Editors (Jan. 1940). "The Electron Art" "Ultra-High Frequency Oscillation with the Beam Tube". Electronics. pp. 68, 69. Retrieved 7 May 2023.
  23. D. Mix (Aug. 1946). "Unstable Signals". QST. p. 26 (Screen-Grid Amplifiers section). Retrieved 18 Aug 2022.
  24. D. Mix (Aug. 1946). pp. 25, 26