25L6

Last updated
50L6GT by Tung Sol 50L6GT.JPG
50L6GT by Tung Sol

The 25L6 is an octal-based vacuum tube of the Beam tetrode type. It is the Octal base equivalent to the type '43 power tube which made early AC-powered loudspeaker radios affordable. It found common application in AC/DC radio receivers - such as those of the All American Five type - and was also found in large numbers in early computers, such as the UNIVAC I.

The EIA 7AC pinout BPT Pinout.png
The EIA 7AC pinout

The tube used EIA base 7AC in common with many other power tubes. The tube was identical in design and ratings with the 50L6 with the exception of having a 25 volt 300 mA heater, whereas the 50L6 has a 50 volt 150 mA heater. The 12L6 and identical 12W6 were made with a 12 volt, 600 mA heater, and the 6W6 was made with a 6.3V, 1200mA heater. There was also a 35L6 with a 35V, 150 mA heater. Because of the slightly lower-power heater, the 35L6 has slightly lower output than the rest of the family.

This family is not to be confused with the 6L6, which has the same basing diagram, but has more than twice the power capability of the 25L6.

Size comparison of a 25L6G with a 25L6GT 25L6Tu-g-gt.jpg
Size comparison of a 25L6G with a 25L6GT

The 25L6 was introduced as a metal tube on November 4, 1936, but most examples of this family were made of glass. The ST14 glass 25L6G came out on March 30, 1937. The T9 size GT version came out on April 11, 1938. There was also a 25L6G in the smaller ST-12 glass envelope.

Computer equipment used this tube as a relay driver or to run the solenoids in key punch machines. The heater in this case ran off the 24 volt power line in the equipment, resulting in long life and slightly lower power output. The industrial type 6046 is a 25L6GT rated for that application.

See also

Related Research Articles

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention helped make amplified radio technology and long-distance telephony possible. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

<span class="mw-page-title-main">Rectifier</span> Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.

<span class="mw-page-title-main">DC connector</span> Electrical connector for carrying DC power

A DC connector is an electrical connector for supplying direct current (DC) power.

<span class="mw-page-title-main">12AX7</span> Miniature high-gain dual triode vacuum tube

12AX7 is a miniature dual-triode 6AV6 vacuum tube with high voltage gain. Developed around 1946 by RCA engineers in Camden, New Jersey, under developmental number A-4522, it was released for public sale under the 12AX7 identifier on September 15, 1947.

<span class="mw-page-title-main">6SN7</span> Dual low-frequency, medium-gain octal triode vacuum tube

6SN7 is a dual triode vacuum tube with an eight-pin octal base. It provides a medium gain. The 6SN7 is basically two 6J5 triodes in one envelope.

<span class="mw-page-title-main">Tube socket</span> Plug-in vacuum tube holder

Tube sockets are electrical sockets into which vacuum tubes can be plugged, holding them in place and providing terminals, which can be soldered into the circuit, for each of the pins. Sockets are designed to allow tubes to be inserted in only one orientation. They were used in most tube electronic equipment to allow easy removal and replacement. When tube equipment was common, retailers such as drug stores had vacuum tube testers, and sold replacement tubes. Some Nixie tubes were also designed to use sockets.

<span class="mw-page-title-main">All American Five</span> American radio with 5 vacuum tubes

The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation (AM) broadcasts in the medium wave band, and were manufactured in the United States from the mid-1930s until the early 1960s. By eliminating a power transformer, cost of the units was kept low; the same principle was later applied to television receivers. Variations in the design for lower cost, shortwave bands, better performance or special power supplies existed, although many sets used an identical set of vacuum tubes.

<span class="mw-page-title-main">Voltage-regulator tube</span>

A voltage-regulator tube is an electronic component used as a shunt regulator to hold a voltage constant at a pre-determined level.

<span class="mw-page-title-main">6V6</span> Beam-power tetrode vacuum tube

The 6V6 is a beam-power tetrode vacuum tube. The first of this family of tubes to be introduced was the 6V6G by Ken-Rad Tube & Lamp Corporation in late 1936, with the availability by December of both Ken-Rad and Raytheon 6V6G tubes announced. It is still in use in audio applications, especially electric guitar amplifiers.

<span class="mw-page-title-main">Hot cathode</span> Type of electrode

In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.

<span class="mw-page-title-main">EL34</span> Vacuum tube (valve)

The EL34 is a thermionic vacuum tube of the power pentode type. The EL34 was introduced in 1955 by Mullard, who were owned by Philips. The EL34 has an octal base and is found mainly in the final output stages of audio amplification circuits; it was also designed to be suitable as a series regulator by virtue of its high permissible voltage between heater and cathode and other parameters. The American RETMA tube designation number for this tube is 6CA7. The USSR analog was 6P27S.

<span class="mw-page-title-main">EL84</span>

The EL84 is a vacuum tube of the power pentode type. It is used in the power-output-stages of audio-amplifiers, most commonly now in guitar amplifiers, but originally in radios. The EL84 is smaller and more sensitive than the octal 6V6 that was widely used around the world until the 1960s. An interchangeable North American type is the 6BQ5.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(deit) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(frnl), RCA (us), RFT(desv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

A valve audio amplifier (UK) or vacuum tube audio amplifier (US) is a valve amplifier used for sound reinforcement, sound recording and reproduction.

A double diode triode is a type of electronic vacuum tube once widely used in radio receivers. The tube has a triode for amplification, along with two diodes, one typically for use as a detector and the other as a rectifier for automatic gain control, in one envelope. In practice the two diodes usually share a common cathode. Multiple tube sections in one envelope minimized the number of tubes required in a radio or other apparatus.

<span class="mw-page-title-main">Magic eye tube</span> Visual indicator of the amplitude of an electronic signal

A magic eye tube or tuning indicator, in technical literature called an electron-ray indicator tube, is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye is a specific type of such a tube with a circular display similar to the EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers, to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in.

<span class="mw-page-title-main">AC/DC receiver design</span> Type of power supply

An AC/DC receiver design is a style of power supply of vacuum tube radio or television receivers that eliminated the bulky and expensive mains transformer. A side-effect of the design was that the receiver could in principle operate from a DC supply as well as an AC supply. Consequently, they were known as "AC/DC receivers".

References