The UNIVAC I (Universal Automatic Computer I) was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand (which later became part of Sperry, now Unisys). In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC". [1]
The first UNIVAC was accepted by the United States Census Bureau on March 31, 1951, and was dedicated on June 14 that year. [2] [3] The fifth machine (built for the U.S. Atomic Energy Commission) was used by CBS to predict the result of the 1952 presidential election. With a sample of a mere 5.5% of the voter turnout, it famously predicted an Eisenhower landslide. [4]
In early 1946, months after the completion of ENIAC, the University of Pennsylvania adopted a new patent policy, which would've required Eckert and Mauchly to assign all their patents to the university if the stayed beyond spring of that year. Unable to reach an agreement with the university, the duo left the Moore School of Electrical Engineering in March 1946, along with much of the senior engineering staff. Simultaneously, the duo founded the Electronic Control Company (later renamed the Eckert-Mauchly Computer Corporation) in Philadelphia. [5] When the duo was given a $300,000 deposit for research by the United States Census Bureau, the conception of the UNIVAC I began in April 1946, a month after they founded their company. [6] Later in August of that year, during the last of the Moore School Lectures, the Moore School team members were proposing new technological designs for the EDVAC computer (which was also in development at the time) and its stored program concept. They were also simultaneously conceiving ideas for a potential successor model to the EDVAC, which were under the working titles of "Parallel-Type EDVAC," "Statistical EDVAC," and simply, "EDVAC II." [7]
In April 1947, Eckert and Mauchly created the tentative instruction code, C-1, for their potential successor model to the EDVAC, which was the earliest document on the programming of an electronic digital computer intended for commercial use. A month later, they renamed their next project to "the UNIVAC." Later in October of that year, the duo drafted U.S. patent 2,629,827 , which was a mercury acoustic delay-line electronic memory system. [8] The patent was eventually accepted in February 1953 as the "first device to gain widespread acceptance as a reliable computer memory system." Meanwhile, in November 1947, the Electronic Control Company began advertising the UNIVAC I (which wasn't shown as it wasn't fully conceptualized at that point). In 1948, the company, renamed the Eckert-Mauchly Computer Corporation, secured a contract with the United States Census Bureau to begin construction on the UNIVAC I. At the same time, Harry Straus, impressed with the development of the duo's next invention, convinced the directors of American Totalisator to invest $500,000 to shore up the financially troubled Eckert-Mauchly Computer Corporation. [7]
In early 1949, Betty Holberton, one of the developers of the project, made the UNIVAC Instructions Code C-10, the first software to allow a computer to be operated by keyboarded commands rather than dials and switches. At the same time, Grace Hopper left the Harvard Computation Laboratory to join the EMCC as a senior mathematician and programmer to help develop the UNIVAC I. Later in June of that year, Mauchly conceived Short Code—the first high-level programming language for an electronic computer—to be used with the BINAC. The Short Code was later tested on the UNIVAC I in early 1950. [7] Meanwhile, in September 1949, by the time the BINAC was delivered to Northrop Aircraft, Eckert and Mauchly received six new orders for the UNIVAC I, so they decided to focus on finishing the UNIVAC I. Unfortunately for them, a month later, Harry Straus was killed when his twin-engine airplane crashed, causing American Totalisator to withdraw their promise of financial support. This was quickly undone when Remington Rand bought the duo's company in February 1950 to help finish construction on the UNIVAC I. The company then became Remington Rand's "Eckert-Mauchly Division." Construction of the UNIVAC I was completed by December 1950, and it was layer delivered to the United States Census Bureau in March 1951 so data could be processed more quickly and accurately. [8]
The UNIVAC I was the first American computer designed at the outset for business and administrative use with fast execution of relatively simple arithmetic and data transport operations, as opposed to the complex numerical calculations required of scientific computers. As such, the UNIVAC competed directly against punch-card machines, though the UNIVAC originally could neither read nor punch cards. That shortcoming hindered sales to companies concerned about the high cost of manually converting large quantities of existing data stored on cards. This was corrected by adding offline card processing equipment, the UNIVAC Tape to Card converter, to transfer data between cards and UNIVAC magnetic tapes. [9] However, the early market share of the UNIVAC I was lower than the Remington Rand Company wished.[ citation needed ]
To promote sales, the company partnered with CBS to have UNIVAC I predict the result of the 1952 United States presidential election live on television. The machine predicted that Dwight D. Eisenhower would win in a landslide over Adlai Stevenson at a chance of 100 to 1, receive 32,915,949 votes and win the Electoral College 438–93. It was opposed to the final Gallup Poll, which had predicted that Eisenhower would win in a close contest. The CBS crew was so certain that UNIVAC was wrong that they believed it was not working, so they changed a certain "national trend factor" from 40% to 4% to obtain what appeared more correct 268–263, and released that for the television. It was soon noticed that the prediction assuming 40% was closer to truth, so they changed it back. [10] [11]
On election night, Eisenhower received 34,075,029 votes in a 442–89 Electoral College victory. UNIVAC had a margin of error of 3.5% of Eisenhower's popular vote tally and was within four votes of his electoral vote total.[ citation needed ] The prediction and its use in CBS's election coverage gave rise to a greater public awareness of computing technology, [12] while computerized predictions became a widely used part of election night broadcasts.[ citation needed ]
The first contracts were with government agencies such as the Census Bureau, the U.S. Air Force, and the U.S. Army Map Service. [1] Contracts were also signed by the ACNielsen Company, and the Prudential Insurance Company. Following the sale of Eckert–Mauchly Computer Corporation to Remington Rand in 1950, due to the cost overruns on the project, Remington Rand convinced Nielsen and Prudential to cancel their contracts.[ citation needed ]
The first sale, to the Census Bureau, was marked with a formal ceremony on March 31, 1951, at the Eckert–Mauchly Division's factory at 3747 Ridge Avenue, Philadelphia. The machine was not actually shipped until the following December, because, as the sole fully set-up model, it was needed for demonstration purposes, and the company was apprehensive about the difficulties of dismantling, transporting, and reassembling the delicate machine. [13] As a result, the first installation was with the second computer, delivered to the Pentagon in June 1952.[ citation needed ]
Date | Customer | Comments |
---|---|---|
1951 | U.S. Census Bureau, Suitland, MD | Not shipped until 1952 [14] [15] |
1952 | U.S. Air Force | Pentagon, Arlington, VA [16] |
1952 | U.S. Army Map Service | Washington, DC. [17] Operated at factory April–September 1952 |
1953 | New York University (for the Atomic Energy Commission) | New York, NY [18] |
1953 | Atomic Energy Commission | Livermore, CA |
1953 | U.S. Navy | David W. Taylor Model Basin, Bethesda, MD [18] |
1954 | Remington Rand | Sales office, New York, NY |
1954 | General Electric | Appliance Division, Louisville, KY. First business sale. [19] |
1954 | Metropolitan Life | New York, NY [20] |
1954 | U.S. Air Force | Wright-Patterson AFB, Dayton, OH |
1954 | U.S. Steel | Pittsburgh, PA |
1954 | Du Pont | Wilmington, DE |
1954 | U.S. Steel | Gary, IN |
1954 | Franklin Life Insurance | Springfield, IL [21] |
1954 | Westinghouse | Pittsburgh, PA |
1954 | Pacific Mutual Life Insurance | Los Angeles, CA |
1954 | Sylvania Electric | New York, NY |
1954 | Consolidated Edison | New York, NY [22] |
Originally priced at US$159,000, the UNIVAC I rose in price until they were between $1,250,000 and $1,500,000. A total of 46 systems were eventually built and delivered.[ citation needed ]
The UNIVAC I was too expensive for most universities, and Sperry Rand, unlike companies such as IBM, was not strong enough financially to afford to give many away. However, Sperry Rand donated UNIVAC I systems to Harvard University (1956), the University of Pennsylvania (1957), and Case Institute of Technology in Cleveland, Ohio (1957). The UNIVAC I at Case was still operable in 1965 but had been supplanted by a UNIVAC 1107.[ citation needed ]
A few UNIVAC I systems stayed in service long after they were made obsolete by advancing technology. The Census Bureau used its two systems until 1963, amounting to 12 and 9 years of service, respectively. Sperry Rand itself used two systems in Buffalo, New York until 1968. The insurance company Life and Casualty of Tennessee used its system until 1970, totaling over 13 years of service.[ citation needed ]
This section needs additional citations for verification .(March 2015) |
UNIVAC I used 6,103 vacuum tubes, [23] [24] weighed 16,686 pounds (8.3 short tons; 7.6 t), consumed 125 kW, [25] and could perform about 1,905 operations per second running on a 2.25 MHz clock. The Central Complex alone (i.e. the processor and memory unit) was 4.3 m by 2.4 m by 2.6 m high. The complete system occupied more than 35.5 m2 (382 ft2) of floor space.[ citation needed ]
The main memory consisted of 1000 words of 12 characters each. When representing numbers, they were written as 11 decimal digits plus sign. The 1000 words of memory consisted of 100 channels of 10-word mercury delay-line registers. The input/output buffers were 60 words each, consisting of 12 channels of 10-word mercury delay-line registers. There are six channels of 10-word mercury delay-line registers as spares. With modified circuitry, seven more channels control the temperature of the seven mercury tanks, and one more channel is used for the 10-word "Y" register. The total of 126 mercury channels is contained in the seven mercury tanks mounted on the backs of sections MT, MV, MX, NT, NV, NX, and GV. Each mercury tank is divided into 18 mercury channels.[ citation needed ]
Each 10-word mercury delay-line channel is made up of three sections:
Instructions were six alphanumeric characters, packed two instructions per word. The addition time was 525 microseconds and the multiplication time was 2150 microseconds. A non-standard modification called "Overdrive" did exist, that allowed for three four-character instructions per word under some circumstances. (Ingerman's simulator for the UNIVAC, referenced below, also makes this modification available.)[ citation needed ]
Digits were represented internally using excess-3 ("XS3") binary-coded decimal (BCD) arithmetic with six bits per digit using the same value as the digits of the alphanumeric character set (and one parity bit per digit for error checking), allowing 11-digit signed magnitude numbers. But with the exception of one or two machine instructions, UNIVAC was considered by programmers to be a decimal machine, not a binary machine, and the binary representation of the characters was irrelevant. If a non-digit character was encountered in a position during an arithmetic operation the machine passed it unchanged to the output, and any carry into the non-digit was lost. (Note, however, that a peculiarity of UNIVAC I's addition/subtraction circuitry was that the "ignore", space, and minus characters were occasionally treated as numeric, with values of –3, –2, and –1, respectively, and the apostrophe, ampersand, and left parenthesis were occasionally treated as numeric, with values 10, 11, and 12.)[ citation needed ]
Besides the operator's console, the only I/O devices connected to the UNIVAC I were up to 10 UNISERVO tape drives, a Remington Standard electric typewriter and a Tektronix oscilloscope. The UNISERVO was the first commercial computer tape drive commercially sold. It used data density 128 bits per inch (with real transfer rate 7,200 characters per second) on magnetically plated phosphor bronze tapes. The UNISERVO could also read and write UNITYPER created tapes at 20 bits per inch. The UNITYPER was an offline typewriter to tape device, used by programmers and for minor data editing. Backward and forward tape read and write operations were possible on the UNIVAC and were fully overlapped with instruction execution, permitting high system throughput in typical sort/merge data processing applications. Large volumes of data could be submitted as input via magnetic tapes created on offline card to tape system and made as output via a separate offline tape to printer system. The operators console had three columns of decimal coded switches that allowed any of the 1000 memory locations to be displayed on the oscilloscope. Since the mercury delay-line memory stored bits in a serial format, a programmer or operator could monitor any memory location continuously and with sufficient patience, decode its contents as displayed on the scope. The on-line typewriter was typically used for announcing program breakpoints, checkpoints, and for memory dumps.[ citation needed ]
A typical UNIVAC I installation had several ancillary devices. There were:
UNIVAC did not provide an operating system. Operators loaded on a UNISERVO a program tape which could be loaded automatically by processor logic. The appropriate source and output data tapes would be mounted and the program started. Results tapes then went to the offline printer or typically for data processing into short-term storage to be updated with the next set of data produced on the offline card to tape unit. The mercury delay-line memory tank temperature was very closely controlled as the speed of sound in mercury varies with temperature. In the event of a power failure, many hours could elapse before the temperature stabilized.[ citation needed ]
Eckert and Mauchly were uncertain about the reliability of digital logic circuits—little was known about them at the time. The UNIVAC had been designed with parallel computation circuits and a statistical comparison of the results. In practice, however, only failing components, i.e., the vacuum tubes, yielded comparison faults, as the circuit designs as such proved very reliable. A regimen was established to ensure the reliability of the fragile vacuum tubes, the choke point of the entire operation. Prior to use large lots of the predominant tube type 25L6 were burned in and thoroughly tested. (Often half of any given production lot would be thrown away.) Technicians would then install a tested and burned-in tube in an easily diagnosed location such as the memory recirculate amplifiers. Then, when further proven aged and proven reliable, this "golden" tube was sent to stock to be pulled out for difficult-to-diagnose logic positions.
Furthermore, it took approximately 30 minutes to turn on the computer—all cathode heater power was stepped up gradually in order to reduce the in-rush current the concominant thermal stress on the tubes. As a result of these measures, uptimes (MTBF) of many days to weeks were eventually obtained on the processor. (The UNISERVO did not have vacuum columns but rather springs and strings to buffer the tape from the reels to the capstan. These mechanical components then became the most frequent source of failures.)[ citation needed ]
ENIAC was the first programmable, electronic, general-purpose digital computer, completed in 1945. Other computers had some of these features, but ENIAC was the first to have them all. It was Turing-complete and able to solve "a large class of numerical problems" through reprogramming.
John Adam Presper "Pres" Eckert Jr. was an American electrical engineer and computer pioneer. With John Mauchly, he designed the first general-purpose electronic digital computer (ENIAC), presented the first course in computing topics, founded the Eckert–Mauchly Computer Corporation, and designed the first commercial computer in the U.S., the UNIVAC, which incorporated Eckert's invention of the mercury delay-line memory.
Engineering Research Associates, commonly known as ERA, was a pioneering computer firm from the 1950s. ERA became famous for their numerical computers, but as the market expanded they became better known for their drum memory systems. They were eventually purchased by Remington Rand and merged into their UNIVAC department. Many of the company founders later left to form Control Data Corporation.
EDVAC was one of the earliest electronic computers. It was built by Moore School of Electrical Engineering, Pennsylvania. Along with ORDVAC, it was a successor to the ENIAC. Unlike ENIAC, it was binary rather than decimal, and was designed to be a stored-program computer.
John William Mauchly was an American physicist who, along with J. Presper Eckert, designed ENIAC, the first general-purpose electronic digital computer, as well as EDVAC, BINAC and UNIVAC I, the first commercial computer made in the United States.
BINAC is an early electronic computer that was designed for Northrop Aircraft Company by the Eckert–Mauchly Computer Corporation (EMCC) in 1949. Eckert and Mauchly had started the design of EDVAC at the University of Pennsylvania, but chose to leave and start EMCC, the first computer company. BINAC was their first product, the first stored-program computer in the United States; BINAC is also sometimes claimed to be the world's first commercial digital computer even though it was limited in scope and never fully functional after delivery.
UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.
The ERA 1101, later renamed UNIVAC 1101, was a computer system designed and built by Engineering Research Associates (ERA) in the early 1950s and continued to be sold by the Remington Rand corporation after that company later purchased ERA. Its (initial) military model, the ERA Atlas, was the first stored-program computer that was moved from its site of manufacture and successfully installed at a distant site. Remington Rand used the 1101's architecture as the basis for a series of machines into the 1960s.
Remington Rand, Inc. was an early American business machine manufacturer, originally a typewriter manufacturer and in a later incarnation the manufacturer of the UNIVAC line of mainframe computers. Formed in 1927 following a merger, Remington Rand was a diversified conglomerate making other office equipment, electric shavers, etc. The Remington Rand Building at 315 Park Avenue South in New York City is a 20-floor skyscraper completed in 1911. After 1955, Remington Rand had a long series of mergers and acquisitions that eventually resulted in the formation of Unisys.
The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the First Draft of a Report on the EDVAC, written by John von Neumann in 1945, describing designs discussed with John Mauchly, J. Presper Eckert at University of Pennsylvania's Moore School of Electrical Engineering. The document describes a design architecture for an electronic digital computer with these components:
The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers. It used solid-state electronics.
The First Draft of a Report on the EDVAC is an incomplete 101-page document written by John von Neumann and distributed on June 30, 1945 by Herman Goldstine, security officer on the classified ENIAC project. It contains the first published description of the logical design of a computer using the stored-program concept, which has come to be known as the von Neumann architecture; the name has become controversial due to von Neumann's failure to name other contributors.
The UNIVAC III, designed as an improved transistorized replacement for the vacuum tube UNIVAC I and UNIVAC II computers. The project was started by the Philadelphia division of Remington Rand UNIVAC in 1958 with the initial announcement of the system been made in the Spring of 1960, however as this division was heavily focused on the UNIVAC LARC project the shipment of the system was delayed until June 1962, with Westinghouse agreeing to furnish system programing and marketing on June 1, 1962. It was designed to be compatible for all data formats. However the word size and instruction set were completely different; this presented significant difficulty as all programs had to be rewritten, so many customers switched to different vendors instead of upgrading existing UNIVACs.
The Eckert–Mauchly Computer Corporation (EMCC) was a computer company founded by J. Presper Eckert and John Mauchly. It was incorporated on December 22, 1947. After building the ENIAC at the University of Pennsylvania, Eckert and Mauchly formed EMCC to build new computer designs for commercial and military applications. The company was initially called the Electronic Control Company, changing its name to Eckert–Mauchly Computer Corporation when it was incorporated. In 1950, the company was sold to Remington Rand, which later merged with Sperry Corporation to become Sperry Rand, and survives today as Unisys.
Herman Lukoff was a computer pioneer and fellow of the IEEE.
Henry Lobe Straus was an American electrical engineer, horse and cattle breeder, sportsman, entrepreneur and computer pioneer.
Jean Bartik was an American computer programmer who was one of the original six programmers of the ENIAC computer.
Honeywell, Inc. v. Sperry Rand Corp., et al., 180 U.S.P.Q. 673, was a landmark U.S. federal court case that in October 1973 invalidated the 1964 patent for the ENIAC, the world's first general-purpose electronic digital computer. The decision held, in part, the following: 1. that the ENIAC inventors had derived the subject matter of the electronic digital computer from the Atanasoff–Berry computer (ABC), prototyped in 1939 by John Atanasoff and Clifford Berry, 2. that Atanasoff should have legal recognition as the inventor of the first electronic digital computer and 3. that the invention of the electronic digital computer ought to be placed in the public domain.
Theory and Techniques for Design of Electronic Digital Computers was a course in the construction of electronic digital computers held at the University of Pennsylvania's Moore School of Electrical Engineering between July 8, 1946, and August 30, 1946, and was the first time any computer topics had ever been taught to an assemblage of people. The course disseminated the ideas developed for the EDVAC and initiated an explosion of computer construction activity in the United States and internationally, especially in the United Kingdom.
A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.
{{cite AV media}}
: CS1 maint: url-status (link)