MANIAC II

Last updated

The MANIAC II (Mathematical Analyzer Numerical Integrator and Automatic Computer Model II) was a first-generation electronic computer, built in 1957 for use at Los Alamos Scientific Laboratory.

Contents

MANIAC II was built by the University of California and the Los Alamos Scientific Laboratory, completed in 1957 as a successor to MANIAC I. It used 2,850 vacuum tubes and 1,040 semiconductor diodes in the arithmetic unit. Overall it used 5,190 vacuum tubes, 3,050 semiconductor diodes, and 1,160 transistors.

It had 4,096 words of memory in Magnetic-core memory (with 2.4 microsecond access time), supplemented by 12,288 words of memory using Williams tubes (with 15 microsecond access time). The word size was 48 bits. Its average multiplication time was 180 microseconds and the average division time was 300 microseconds.

By the time of its decommissioning, the computer was all solid-state, using a combination of RTL, DTL and TTL. It had an array multiplier, 15 index registers, 16K of 6-microsecond cycle time core memory, and 64K of 2-microsecond cycle time core memory. A NOP instruction took about 2.5 microseconds. A multiplication took 8 microseconds and a division 25 microseconds. It had a paging unit using 1K word pages with an associative 16-deep lookup memory. A 1-megaword CDC drum was hooked up as a paging device. It also had several ADDS Special-Order Direct-View Storage-Tube terminals. These terminals used an extended character set which covered about all the mathematical symbols, and allowed for half-line spacing for math formulas. For I/O, it had two IBM 360 series nine-track and two seven-track 1/2" tape drives. It had an eight-bit paper-tape reader and punch, and a 500 line-per-minute printer (1500 line-per-minute using the hexadecimal character set). Storage was three IBM 7000 series 1301 disk drives, each having two modules of 21.6 million characters apiece.

One of the data products of MANIAC II was the table of numbers appearing in the book The 3-j and 6-j Symbols by Manuel Rotenberg, et al., published in 1959. Page 37 of that book contains a brief description of the implementation of the program on the computer, and the I/O devices used in the production of the book.Hoover was also the co-creator

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">History of computing hardware</span> From early calculation aids to modern day computers

The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers. Before the 20th century, most calculations were done by humans.

<span class="mw-page-title-main">IBM 704</span> Vacuum-tube computer system

The IBM 704 is a large digital mainframe computer introduced by IBM in 1954. It was the first mass-produced computer with hardware for floating-point arithmetic. The IBM 704 Manual of operation states:

The type 704 Electronic Data-Processing Machine is a large-scale, high-speed electronic calculator controlled by an internally stored program of the single address type.

<span class="mw-page-title-main">IBM 650</span> Vacuum tube computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">IBM 7030 Stretch</span> First IBM supercomputer using dedicated transistors

The IBM 7030, also known as Stretch, was IBM's first transistorized supercomputer. It was the fastest computer in the world from 1961 until the first CDC 6600 became operational in 1964.

<span class="mw-page-title-main">IBM 701</span> Vacuum-tube computer system

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in development, was IBM’s first commercial scientific computer and its first series production mainframe computer, which was announced to the public on May 21, 1952. It was invented and developed by Jerrier Haddad and Nathaniel Rochester based on the IAS machine at Princeton.

<span class="mw-page-title-main">IAS machine</span> First electronic computer to be built at the Institute for Advanced Study

The IAS machine was the first electronic computer built at the Institute for Advanced Study (IAS) in Princeton, New Jersey. It is sometimes called the von Neumann machine, since the paper describing its design was edited by John von Neumann, a mathematics professor at both Princeton University and IAS. The computer was built from late 1945 until 1951 under his direction. The general organization is called von Neumann architecture, even though it was both conceived and implemented by others. The computer is in the collection of the Smithsonian National Museum of American History but is not currently on display.

<span class="mw-page-title-main">UNIVAC 1103</span> Computer

The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, was a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work.

<span class="mw-page-title-main">IBM 700/7000 series</span> Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

<span class="mw-page-title-main">UNIVAC LARC</span> Livermore Advanced Research Computer

The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers.

The ORACLE or Oak Ridge Automatic Computer and Logical Engine, an early computer built by Oak Ridge National Laboratory, was based on the IAS architecture developed by John von Neumann.

<span class="mw-page-title-main">Bendix G-15</span> 1956 computer design

The Bendix G-15 is a computer introduced in 1956 by the Bendix Corporation, Computer Division, Los Angeles, California. It is about 5 by 3 by 3 feet and weighs about 966 pounds (438 kg). The G-15 has a drum memory of 2,160 29-bit words, along with 20 words used for special purposes and rapid-access storage. The base system, without peripherals, cost $49,500. A working model cost around $60,000. It could also be rented for $1,485 per month. It was meant for scientific and industrial markets. The series was gradually discontinued when Control Data Corporation took over the Bendix computer division in 1963.

<span class="mw-page-title-main">UNIVAC II</span>

The UNIVAC II computer was an improvement to the UNIVAC I that the UNIVAC division of Sperry Rand first delivered in 1958. The improvements included the expansion of core memory from 2,000 to 10,000 words; UNISERVO II tape drives, which could use either the old UNIVAC I metal tapes or the new PET tapes; and some transistorized circuits. It was fully compatible with existing UNIVAC I programs for both code and data. It weighed about 16,000 pounds.

<span class="mw-page-title-main">BRLESC</span> Ballistic Research Laboratories Electronic Scientific Computer

The BRLESC I was one of the last of the first-generation electronic computers. It was built by the United States Army's Ballistic Research Laboratory (BRL) at Aberdeen Proving Ground with assistance from the National Bureau of Standards, and was designed to take over the computational workload of EDVAC and ORDVAC, which themselves were successors of ENIAC. It began operation in 1962. The Ballistic Research Laboratory became a part of the U.S. Army Research Laboratory in 1992.

The RAYDAC was a one-of-a-kind computer built by Raytheon. It was started in 1949 and finished in 1953. It was installed at the Naval Air Missile Test Center at Point Mugu, California.

The MANIAC III was a second-generation electronic computer, built in 1961 for use at the Institute for Computer Research at the University of Chicago.

FLAC, the Florida Automatic Computer, was an early digital electronic computer built for the United States Air Force at Patrick Air Force Base (PAFB) in Brevard County of Florida, to perform missile data reduction. The computer began service in 1953.

<span class="mw-page-title-main">IBM Naval Ordnance Research Calculator</span> 1950s computer

The IBM Naval Ordnance Research Calculator (NORC) was a one-of-a-kind first-generation computer built by IBM for the United States Navy's Bureau of Ordnance. It went into service in December 1954 and was likely the most powerful computer at the time. The Naval Ordnance Research Calculator (NORC), was built at the Watson Scientific Computing Laboratory under the direction of Wallace Eckert.

<span class="mw-page-title-main">Vacuum-tube computer</span>

A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. Although superseded by second-generation transistorized computers, vacuum-tube computers continued to be built into the 1960s. These computers were mostly one-of-a-kind designs.

Philco was one of the pioneers of transistorized computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.