This is a list of UNIVAC products. It ends in 1986, the year that Sperry Corporation merged with Burroughs Corporation to form Unisys as a result of a hostile takeover bid [1] launched by Burrough's CEO W. Michael Blumenthal. [2] [ circular reference ]
These machines implemented a variant of the IBM System/360 architecture
This is too small a list.
Program | Code | Notes |
---|---|---|
CALL Macro Processor | CALL | |
CSHELL Command Shell | CSHELL | |
Conversational TimeSharing | CTS | |
Univac Text Editor | ED | |
Full-Screen Editor | FSED | |
Interactive Processing Facility | IPF | |
Logically Integrated FORTRAN Translator | LIFT | |
Symbolic Stream Generator | SSG | |
Table of Contents Editor | TOCED | Edits table of contents, privileged users can read the master file directory and interface with the print system. [13] |
Transaction Interface Package | TIP | |
UEDIT | UEDIT | |
Client Server Development | UTS-400 | COBOL |
MAPPER (Software) | MAPPER | 4GL [14] |
Programming Language for UNISYS Systems | PLUS | |
Master File Directory | MFD | |
SX1100 | SX1100 | UNIX on Exec8, OS1100 and OS2200 |
CS1100 | CS1100 | Communications Simulator |
Traffic Control Language | TCL | |
The UNIVAC I was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".
UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.
The AN/USQ-17 or Naval Tactical Data System (NTDS) computer referred to in Sperry Rand documents as the Univac M-460, was Seymour Cray's last design for UNIVAC. UNIVAC later released a commercial version, the UNIVAC 490. That system was later upgraded to a multiprocessor configuration as the 494.
The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.
The UNIVAC 1105 was a follow-on computer to the UNIVAC 1103A introduced by Sperry Rand in September 1958. The UNIVAC 1105 used 21 types of vacuum tubes, 11 types of diodes, 10 types of transistors, and three core types.
The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, was a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work.
The UNIVAC 490 was a 30-bit word magnetic-core memory machine with 16K or 32K words; 4.8 microsecond cycle time made by UNIVAC. It was a commercial derivative of the instruction set that had been developed for the AN/USQ-17 by Seymour Cray for the US Navy. This was the last machine that Cray designed before leaving UNIVAC to join the early Control Data Corporation.
The UNIVAC Solid State was a magnetic drum-based solid-state computer announced by Sperry Rand in December 1958 as a response to the IBM 650. It was one of the first computers offered for sale to be (nearly) entirely solid-state, using 700 transistors, and 3000 magnetic amplifiers (FERRACTOR) for primary logic, and 20 vacuum tubes largely for power control. It came in two versions, the Solid State 80 and the Solid State 90. In addition to the "80/90" designation, there were two variants of the Solid State – the SS I 80/90 and the SS II 80/90. The SS II series included two enhancements – the addition of 1,280 words of core memory and support for magnetic tape drives. The SS I had only the standard 5,000-word drum memory described in this article and no tape drives.
The Navy Electronics Laboratory International ALGOL Compiler (NELIAC) is a dialect and compiler implementation of the programming language ALGOL 58, developed by the Navy Electronics Laboratory (NEL) in 1958.
CMS-2 is an embedded systems programming language used by the United States Navy. It was an early attempt to develop a standardized high-level computer programming language intended to improve code portability and reusability. CMS-2 was developed primarily for the US Navy’s tactical data systems (NTDS).
The UNIVAC III, designed as an improved transistorized replacement for the vacuum tube UNIVAC I and UNIVAC II computers, was introduced in June 1962, with Westinghouse agreeing to furnish system programing and marketing on June 1, 1962. It was designed to be compatible for all data formats. However the word size and instruction set were completely different; this presented significant difficulty as all programs had to be rewritten, so many customers switched to different vendors instead of upgrading existing UNIVACs.
The UNIVAC 418 was a transistorized, 18-bit word magnetic-core memory machine made by Sperry Univac. The name came from its 4-microsecond memory cycle time and 18-bit word. The assembly language for this class of computers was TRIM III and ART418.
The UNIVAC II computer was an improvement to the UNIVAC I that the UNIVAC division of Sperry Rand first delivered in 1958. The improvements included the expansion of core memory from 2,000 to 10,000 words; UNISERVO II tape drives, which could use either the old UNIVAC I metal tapes or the new PET tapes; and some transistorized circuits. It was fully compatible with existing UNIVAC I programs for both code and data. It weighed about 16,000 pounds.
Naval Tactical Data System (NTDS) was a computerized information processing system developed by the United States Navy in the 1950s and first deployed in the early 1960s for use in combat ships. It took reports from multiple sensors on different ships and collated it to produce a single unified map of the battlespace. This information could then be relayed back to the ships and to the weapons operators.
The UNIVAC 1050 was a variable word-length decimal and binary computer. It was initially announced in May 1962 as an off-line input-output processor for larger UNIVAC systems.
VS/9 is a computer operating system for the UNIVAC Series 90 mainframes, used during the late 1960s through 1980s. The 90/60 and 90/70 were repackaged Univac 9700 computers. After the RCA acquisition by Sperry, it was determined that the RCA TSOS operating system was far more advanced than the Univac counterpart, so the company opted to merge the Univac hardware with the RCA software and introduced the 90/70. The 90/60 was introduced shortly thereafter as a slower, less expensive 90/70. It was not until the introduction of the 90/80 that VS/9 finally had a hardware platform optimized to take full advantage of its capability to allow both interactive and batch operations on the same computer.
The AN/UYK-7 was the standard 32-bit computer of the United States Navy for surface ship and submarine platforms, starting in 1970. It was used in the Navy's NTDS & Aegis combat systems and U.S. Coast Guard, and the navies of U.S. allies. It was also used by the U.S. Army.
OS 2200 is the operating system for the Unisys ClearPath Dorado family of mainframe systems. The operating system kernel of OS 2200 is a lineal descendant of Exec 8 for the UNIVAC 1108 and was previously known as OS 1100. Documentation and other information on current and past Unisys systems can be found on the Unisys public support website.
Philco was one of the pioneers of transistorized computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.