Burroughs Corporation

Last updated
Burroughs Corporation
Formerly
  • American Arithmometer Company (1886–1904)
  • Burroughs Adding Machine Company (1904–1953)
Industry
Founded1886;138 years ago (1886)
Founder William Seward Burroughs I
Defunct1986;38 years ago (1986)
FateMerged with the Sperry Corporation
Successor Unisys
Headquarters St. Louis, Missouri, U.S.

The Burroughs Corporation was a major American manufacturer of business equipment. The company was founded in 1886 as the American Arithmometer Company by William Seward Burroughs. In 1986, it merged with Sperry UNIVAC to form Unisys. The company's history paralleled many of the major developments in computing. At its start, it produced mechanical adding machines, and later moved into programmable ledgers and then computers. It was one of the largest producers of mainframe computers in the world, also producing related equipment including typewriters and printers.

Contents

Early history

1914 advertisement Burrough's Adding Machines, 1914.jpg
1914 advertisement
An early Burroughs adding machine BurroughsCorporationAddingMachine.jpg
An early Burroughs adding machine
Desktop model in use around 1910 1890s adding machine.jpg
Desktop model in use around 1910

In 1886, the American Arithmometer Company was established in St. Louis, Missouri, to produce and sell an adding machine invented by William Seward Burroughs (grandfather of Beat Generation author William S. Burroughs). In 1904, six years after Burroughs' death, the company moved to Detroit and changed its name to the Burroughs Adding Machine Company. It was soon the biggest adding machine company in America. [1]

Evolving product lines

The adding machine range began with the basic, hand-cranked Class 1 which was only capable of adding.[ citation needed ] [2] The design included some revolutionary features, foremost of which was the dashpot which governed the speed at which the operating lever could be pulled so allowing the mechanism to operate consistently correctly. [3] The machine also had a full-keyboard with a separate column of keys 1 to 9 for each decade where the keys latch when pressed, with interlocking which prevented more than one key in any decade from being latched. The latching allowed the operator to quickly check that the correct number had been entered before pulling the operating lever. The numbers entered and the final total were printed on a roll of paper at the rear, so there was no danger of the operator writing down the wrong answer and there was a copy of the calculation which could be checked later if necessary.

The Class 2 machine, called the "duplex" and built in the same basic style, provided a means of keeping two separate totals. The Class 6 machine was built for bookkeeping work and provided the ability for direct subtraction.

Burroughs released the Class 3 and Class 4 adding machines which were built after the purchase of the Pike Adding Machine Company around 1910. These machines provided a significant improvement over the older models because operators could view the printing on the paper tape. The machines were called "the visible" for this improvement.

In 1925 Burroughs released a much smaller machine called "the portable". Two models were released, the Class 8 (without subtraction) and the Class 9 with subtraction capability. Later models continued to be released with the P600 and top-of-the-range P612 offered some limited programmability based upon the position of the movable carriage. The range was further extended by the inclusion of the Series J ten-key machines which provided a single finger calculation facility, and the Class 5 (later called Series C) key-driven calculators in both manual and electrical assisted comptometers.

In the late 1960s, the Burroughs sponsored "nixi-tube" provided an electronic display calculator. Burroughs developed a range of adding machines with different capabilities, gradually increasing in their capabilities. A revolutionary adding machine was the Sensimatic, which was able to perform many business functions semi-automatically.[ citation needed ] It had a moving programmable carriage to maintain ledgers. It could store 9, 18 or 27 balances during the ledger posting operations and worked with a mechanical adder named a Crossfooter. The Sensimatic developed into the Sensitronic which could store balances on a magnetic stripe which was part of the ledger card. This balance was read into the accumulator when the card was inserted into the carriage. The Sensitronic was followed by the E1000, E2000, E3000, E4000, E6000 and the E8000, which were computer systems supporting card reader/punches and a line printer.[ citation needed ]

Later, Burroughs was selling more than adding machines, including typewriters.

Move into computers

The biggest shift in company history came in 1953: the Burroughs Adding Machine Company was renamed the Burroughs Corporation and began moving into digital computer products, initially for banking institutions. This move began with Burroughs' purchase in June 1956, of the ElectroData Corporation in Pasadena, California, a spinoff of the Consolidated Engineering Corporation which had designed test instruments and had a cooperative relationship with Caltech in Pasadena. [4] ElectroData had built the Datatron 205 and was working on the Datatron 220. [4] The first major computer product that came from this marriage was the B205 tube computer. In 1968 [5] the L and TC series range was produced (e.g. the TC500—Terminal Computer 500) which had a golf ball printer and in the beginning a 1K (64 bit) disk memory. These were popular as branch terminals to the B5500/6500/6700 systems, and sold well in the banking sector, where they were often connected to non-Burroughs mainframes. In conjunction with these products, Burroughs also manufactured an extensive range of cheque processing equipment, normally attached as terminals to a medium systems such as B200/B300 and larger systems such as a B2700 or B1700.

In the 1950s, Burroughs worked with the Federal Reserve Bank on the development and computer processing of magnetic ink character recognition (MICR) especially for the processing of bank cheques. Burroughs made special MICR/OCR sorter/readers which attached to their medium systems line of computers (2700/3700/4700) and B200/B300 systems and this entrenched the company in the computer side of the banking industry.

A force in the computing industry

Burroughs was one of the nine major United States computer companies in the 1960s, with IBM the largest, Honeywell, NCR Corporation, Control Data Corporation (CDC), General Electric (GE), Digital Equipment Corporation (DEC), RCA and Sperry Rand (UNIVAC line). In terms of sales, Burroughs was always a distant second to IBM. In fact, IBM's market share was so much larger than all of the others that this group was often referred to as "IBM and the Seven Dwarves." [6] By 1972 when GE and RCA were no longer in the mainframe business, the remaining five companies behind IBM became known as the BUNCH, an acronym based on their initials.

At the same time, Burroughs was very much a competitor. Like IBM, Burroughs tried to supply a complete line of products for its customers, including Burroughs-designed printers, disk drives, tape drives, computer printing paper and typewriter ribbons.

Developments and innovations

The Burroughs Corporation developed three highly innovative architectures, based on the design philosophy of "language-directed design". Their machine instruction sets favored one or many high level programming languages, such as ALGOL, COBOL or FORTRAN. All three architectures were considered mainframe class machines:

Many computer scientists [ who? ] consider these series of computers to be technologically groundbreaking. Stack oriented processors, with 48 bit word length where each word was defined as data or program contributed significantly to a secure operating environment, long before spyware and viruses affected computing. The modularity of these large systems was unique: multiple CPUs, multiple memory modules and multiple I/O and Data Comm processors permitted incremental and cost effective growth of system performance and reliability.

In industries like banking, where continuous operations was mandatory, Burroughs Large Systems penetrated nearly every large bank, including the Federal Reserve Bank. Burroughs built the backbone switching systems for Society for Worldwide Interbank Financial Telecommunication (SWIFT) which sent its first message in 1977. Unisys is still the provider to SWIFT today.

Merger with Sperry

Burroughs Corporation logo 1980s.svg
Logo of Burroughs Corporation shortly before its merger with Sperry

In September 1986, Burroughs Corporation merged with Sperry Corporation to form Unisys. For a time, the combined company retained the Burroughs processors as the A- and V-systems lines. As the market for large systems shifted from proprietary architectures to common servers, the company eventually dropped the V-Series line, although customers continued to use V-series systems as of 2010. As of 2017 Unisys continues to develop and market the A-Series, now known as ClearPath. [16]

Burroughs Payment Systems

Burroughs, Inc.
FormerlyBurroughs Payment Systems, Inc. (2010–2012)
Founded2010;14 years ago (2010)
Headquarters Plymouth, Michigan, United States
Products Payment processors
Parent Marlin Equity Partners
Website burroughs.com

In 2010, Unisys sold off its Payment Systems Division to Marlin Equity Partners, a California-based private investment firm, which incorporated it as Burroughs Payment Systems, Inc. (later just Burroughs, Inc.), based in Plymouth, Michigan. [17] [18]

Burroughs B205 hardware has appeared as props in many Hollywood television and film productions from the late 1950s. For example, a B205 console was often shown in the television series Batman as the Bat Computer; also as the flight computer in Lost in Space . B205 tape drives were often seen in series such as The Time Tunnel and Voyage to the Bottom of the Sea . [19] [20] Burroughs equipment was also featured in the movie, "The Angry Red Planet."

Related Research Articles

A disk operating system (DOS) is a computer operating system that resides on and can use a disk storage device, such as a floppy disk, hard disk drive, or optical disc. A disk operating system provides a file system for organizing, reading, and writing files on the storage disk, and a means for loading and running programs stored on that disk. Strictly speaking, this definition does not include any other functionality, so it does not apply to more complex OSes, such as Microsoft Windows, and is more appropriately used only for older generations of operating systems.

IBM mainframes are large computer systems produced by IBM since 1952. During the 1960s and 1970s, IBM dominated the computer market with the 7000 series and the later System/360, followed by the System/370. Current mainframe computers in IBM's line of business computers are developments of the basic design of the System/360.

<span class="mw-page-title-main">Mainframe computer</span> Large computer

A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise resource planning, and large-scale transaction processing. A mainframe computer is large but not as large as a supercomputer and has more processing power than some other classes of computers, such as minicomputers, servers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers.

<span class="mw-page-title-main">History of operating systems</span> Aspect of computing history

Computer operating systems (OSes) provide a set of functions needed and used by most application programs on a computer, and the links needed to control and synchronize computer hardware. On the first computers, with no operating system, every program needed the full hardware specification to run correctly and perform standard tasks, and its own drivers for peripheral devices like printers and punched paper card readers. The growing complexity of hardware and application programs eventually made operating systems a necessity for everyday use.

Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system. The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them. There are many variations on this basic theme, and the definition of multiprocessing can vary with context, mostly as a function of how CPUs are defined.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.

The Burroughs Large Systems Group produced a family of large 48-bit mainframes using stack machine instruction sets with dense syllables. The first machine in the family was the B5000 in 1961, which was optimized for compiling ALGOL 60 programs extremely well, using single-pass compilers. The B5000 evolved into the B5500 and the B5700. Subsequent major redesigns include the B6500/B6700 line and its successors, as well as the separate B8500 line.

<span class="mw-page-title-main">Mechanical calculator</span> Mechanical machine for arithmetic operations for absolute calculators

A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or (historically) a simulation such as an analog computer or a slide rule. Most mechanical calculators were comparable in size to small desktop computers and have been rendered obsolete by the advent of the electronic calculator and the digital computer.

The MCP is the operating system of the Burroughs B5000/B5500/B5700 and the B6500 and successors, including the Unisys Clearpath/MCP systems.

The Burroughs B1000 Series was a series of mainframe computers, built by the Burroughs Corporation, and originally introduced in the 1970s with continued software development until 1987. The series consisted of three major generations which were the B1700, B1800, and B1900 series machines. They were also known as the Burroughs Small Systems, by contrast with the Burroughs Large Systems and the Burroughs Medium Systems.

System Development Corporation (SDC) was a computer software company based in Santa Monica, California. Founded in 1955, it is considered the first company of its kind.

<span class="mw-page-title-main">Robert S. Barton</span>

Robert Stanley "Bob" Barton was the chief architect of the Burroughs B5000 and other computers such as the B1700, a co-inventor of dataflow architecture, and an influential professor at the University of Utah.

The Burroughs B2500 through Burroughs B4900 was a series of mainframe computers developed and manufactured by Burroughs Corporation in Pasadena, California, United States, from 1966 to 1991. They were aimed at the business world with an instruction set optimized for the COBOL programming language. They were also known as Burroughs Medium Systems, by contrast with the Burroughs Large Systems and Burroughs Small Systems.

Memorex Corp. began as a computer tape producer and expanded to become both a consumer media supplier and a major IBM plug compatible peripheral supplier. It was broken up and ceased to exist after 1996 other than as a consumer electronics brand specializing in disk recordable media for CD and DVD drives, flash memory, computer accessories and other electronics.

LINC is a fourth-generation programming language, used mostly on Unisys computer systems.

Systems Programming Language, often shortened to SPL but sometimes known as SPL/3000, was a procedurally-oriented programming language written by Hewlett-Packard for the HP 3000 minicomputer line and first introduced in 1972. SPL was used to write the HP 3000's primary operating system, Multi-Programming Executive (MPE). Similar languages on other platforms were generically referred to as system programming languages, confusing matters.

<span class="mw-page-title-main">History of general-purpose CPUs</span>

The history of general-purpose CPUs is a continuation of the earlier history of computing hardware.

The history of IBM mainframe operating systems is significant within the history of mainframe operating systems, because of IBM's long-standing position as the world's largest hardware supplier of mainframe computers. IBM mainframes run operating systems supplied by IBM and by third parties.

The following outline is provided as an overview of and topical guide to computing:

References

  1. "Burroughs Adding Machine" . Retrieved 18 May 2020.
  2. "Burroughs". Vintage Calculators Web Museum. Retrieved 18 May 2020.
  3. Morgan, Bryan (1953). Total to Date: The Evolution of the Adding Machine: The Story of Burroughs. Burroughs Adding Machine Limited London. p. 27.
  4. 1 2 Sawyer, T.J., "Burroughs 205 HomePage"
  5. Burroughs Annual Report 1968
  6. Dvorak, John C. (2006-11-25). "IBM and the Seven Dwarfs — Dwarf One: Burroughs". Dvorak Uncensored. Retrieved 2010-02-04.
  7. "Burroughs B80 Family". Archived from the original on 2012-03-21. Retrieved 2011-03-24.
  8. "B25 FAMILY OF UNIVERSAL WORKSTATIONS INTRODUCTION", 1987
  9. "China Deal For Burroughs", The New York Times, AP story, January 3, 1985
  10. "Burroughs BUIC - AN/GSA-51 SAGE Backup", archived at SMECC
  11. Anderson, J. P.; Hoffman, S. A.; Shifman, J.; Williams, R. J. (1962). "D825 - a multiple-computer system for command & control". Proceedings of the December 4-6, 1962, fall joint computer conference on - AFIPS '62 (Fall). pp. 86–96. doi:10.1145/1461518.1461527.
  12. Enslow, Philip H. Jr. (1977). "Multiprocessor Organization—A Survey". Computing Surveys. 9 (1): 103–129. doi:10.1145/356683.356688.
  13. "Burroughs Display Systems" Archived 2012-03-24 at the Wayback Machine , Defense and Space Group Marketing Division, Paoli, Pennsylvania, 1965
  14. 1 2 Gray, George (October 1999). "Burroughs Third-Generation Computers". Unisys History Newsletter. 3 (5). Archived from the original on October 2, 2017.
  15. "Title: Trade show exhibition featuring the D84; Date 1965" Archived 2014-11-29 at the Wayback Machine , University of Minnesota archives
  16. "Unisys Awarded Contract to Support IRS Mission-Critical Computing Systems". Unisys. 2013-02-19. Retrieved 2013-03-11. BLUE BELL, Pa., February 19, 2013 - Unisys Corporation (NYSE: UIS) announced today that it has been awarded the Enterprise Computing Center Support (ECCS) contract from the Internal Revenue Service (IRS) [...] Under this single-award indefinite delivery-indefinite quantity (IDIQ) contract, the IRS can award Unisys task orders to provide support and maintenance services for the IRS computing environment, including Unisys ClearPath Dorado servers.
  17. "Marlin Equity Partners acquires elements of Unisys payment systems" Archived 2010-04-14 at the Wayback Machine , Burroughs press release, February 3, 2010.
  18. Burroughs Payment Systems website. In 2012, the company changed its name to Burroughs, Inc.
  19. ""B205 On Screen"".
  20. ""Starring the Computer: Burroughs B205"".

Further reading