This article needs additional citations for verification .(December 2013) |
A front panel was used on early electronic computers to display and allow the alteration of the state of the machine's internal registers and memory. The front panel usually consisted of arrays of indicator lamps, digit [lower-alpha 1] and symbol displays, toggle switches, dials, and push buttons mounted on a sheet metal face plate. In early machines, CRTs might also be present (as an oscilloscope, or, for example, to mirror the contents of Williams–Kilburn tube memory). Prior to the development of CRT system consoles, many computers such as the IBM 1620 had console typewriters.
Usually the contents of one or more hardware registers would be represented by a row of lights, allowing the contents to be read directly when the machine was stopped. The switches allowed direct entry of data and address values into registers or memory.
On some machines, certain lights and switches were reserved for use under program control. These were often referred to as sense indicators, sense lights and sense switches . For example, the original Fortran compiler for the IBM 704 contained specific statements for testing and manipulation of the 704's sense lights and switches. These switches were often used by the program to control optional behavior, for example information might be printed only if a particular sense switch was set.
Operating systems made for computers with blinkenlights , for example, RSTS/E and RSX-11, would frequently have an idle task blink the panel lights in some recognizable fashion. System programmers often became very familiar with these light patterns and could tell from them how busy the system was and, sometimes, exactly what it was doing at the moment. The Master Control Program for the Burroughs Corporation B6700 mainframe would display a large block-letter "B" when the system was idle. [1]
Switches and lights required little additional logic circuitry and usually no software support, important when logic hardware components were costly and software often limited.
While other machines of its day had elaborate front panels to control them, the 6600 has only a dead start panel. [2] There is a dual CRT system console, but it is controlled by operating system code on a peripheral processor and neither controls nor displays the hardware directly.
Early microcomputers such as the 1975 Altair 8800 also relied on front panels, but since the introduction of the Apple II, TRS-80, and Commodore PET during the home computer boom of 1977, the vast majority of microcomputers came with keyboards and connections for TV screens or other monitors.
An operator would use the front panel to bootstrap the computer, to debug running programs, and to find hardware faults.
Many computers had controls, e.g., buttons, dials, keyboards, toggle switches, for entering addresses, controls for displaying the data at an address and controls for altering storage contents. These were typically used for booting and debugging.
Typically, the operator would have a written procedure containing a short series of bootstrap instructions to be hand-entered using, e.g., dials, keyboard, toggle switches. First, the operator would, e.g., press the address switch and enter the address. For easier entry and readout, on some computers (such as the DEC PDP-8 or MITS Altair 8800) binary digits were grouped into threes or fours on the front panel, with each group of lights or switches representing a single octal (between 0 and 7) or hexadecimal (between 0 and F) digit. Some [lower-alpha 2] decimal computers, e.g., IBM 1620, used binary-coded decimal for memory addresses.
Next the operator would enter the value intended for that address. After entering several of these instructions (some computers had a deposit next button, which would deposit subsequent values in subsequent addresses, relieving the operator of needing to enter subsequent addresses), the operator would then set the starting address of the bootstrap program and press the run switch to begin the execution of the program. The bootstrap program usually read a somewhat longer program from punched paper-tape, punched cards, magnetic tape, drum or disk which in turn would load the operating system from disk.
Some machines accelerated the bootstrap process by allowing the operator to set the controls to contain one or two machine language instructions and then directly executing those instructions. Other machines allowed I/O devices to be explicitly commanded from the front panel (for example, "Read-In Preset" on the PDP-10 or the accessing of memory-mapped I/O devices on a PDP-11). Some machines also contained various bootstrap programs in ROM and all that was required to boot the system was to start it executing at the address of the correct ROM program.
Front panels were often used to debug programs when operating support was limited and most programs were run in stand-alone mode. Typically a front-panel switch could cause the computer to single-step, that is run a single instruction and stop until the programmer pressed a button to execute the next instruction. An address stop could be set to stop a running program when it attempted to execute an instruction or access data at a specified address. The contents of registers and memory would be displayed in the front-panel lights. The programmer could read and alter register contents, change program instructions or data in memory or force a branch to another section of code.
When multiprogramming became the norm it was no longer acceptable to tie up an entire machine for debugging, except for special situations. Programs called debuggers were written which provided the programmer with the equivalent of the front-panel functions without requiring the entire machine.
For fun, bored programmers would create programs to display animated light shows. Front panels in the late 1960s and early 1970s were quite brightly colored. In the late 1970s and early 1980s, bootstrap ROMs became common. Since computers could use them to start themselves without operator intervention, most computers were built without a front switch panel. High-powered calculators, such as the HP 9830 based on ROM, were among the first computers to do away with front panels and operators.
Huge banks of "blinkenlights" and "blowenfuzen" were featured on TV and movies as the popular image of the "computer" during the 1950s to 1970. (A Burroughs B205 was used as a Hollywood prop for many of these shows.)
The following procedure would bootstrap a PDP-8 system from an RK05 moving-head magnetic disk:
This process works by depositing a simple, two-instruction program in memory and executing it. The first instruction commands the disk controller to begin reading the disk from the current disk address into the current memory address. The second instruction is a JMP instruction that jumps to itself endlessly. When "Clear" is pressed, the disk controller's current disk address is set to sector 0 and its current memory address is set to memory location 0000. When the read is commanded, the program stored in disk sector 0 overlays the bootstrap program and, once the JMP instruction is overlaid, the disk program takes control of the machine.
The Data General Nova is a series of 16-bit minicomputers released by the American company Data General. The Nova family was very popular in the 1970s and ultimately sold tens of thousands of units.
Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.
The PDP-8 is a family of 12-bit minicomputers that was produced by Digital Equipment Corporation (DEC). It was the first commercially successful minicomputer, with over 50,000 units being sold over the model's lifetime. Its basic design follows the pioneering LINC but has a smaller instruction set, which is an expanded version of the PDP-5 instruction set. Similar machines from DEC are the PDP-12 which is a modernized version of the PDP-8 and LINC concepts, and the PDP-14 industrial controller system.
The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer.
In computing, booting is the process of starting a computer as initiated via hardware such as a button on the computer or by a software command. After it is switched on, a computer's central processing unit (CPU) has no software in its main memory, so some process must load software into memory before it can be executed. This may be done by hardware or firmware in the CPU, or by a separate processor in the computer system.
In computing, a core dump, memory dump, crash dump, storage dump, system dump, or ABEND dump consists of the recorded state of the working memory of a computer program at a specific time, generally when the program has crashed or otherwise terminated abnormally. In practice, other key pieces of program state are usually dumped at the same time, including the processor registers, which may include the program counter and stack pointer, memory management information, and other processor and operating system flags and information. A snapshot dump is a memory dump requested by the computer operator or by the running program, after which the program is able to continue. Core dumps are often used to assist in diagnosing and debugging errors in computer programs.
A debugger or debugging tool is a computer program used to test and debug other programs. The main use of a debugger is to run the target program under controlled conditions that permit the programmer to track its execution and monitor changes in computer resources that may indicate malfunctioning code. Typical debugging facilities include the ability to run or halt the target program at specific points, display the contents of memory, CPU registers or storage devices, and modify memory or register contents in order to enter selected test data that might be a cause of faulty program execution.
RT-11 is a discontinued small, low-end, single-user real-time operating system for the full line of Digital Equipment Corporation PDP-11 16-bit computers. RT-11 was first implemented in 1970. It was widely used for real-time computing systems, process control, and data acquisition across all PDP-11s. It was also used for low-cost general-use computing.
The LINC is a 12-bit, 2048-word transistorized computer. The LINC is considered by some to be the first minicomputer and a forerunner to the personal computer. Originally named the Linc, suggesting the project's origins at MIT's Lincoln Laboratory, it was renamed LINC after the project moved from the Lincoln Laboratory. The LINC was designed by Wesley A. Clark and Charles Molnar.
The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.
RSTS is a multi-user time-sharing operating system developed by Digital Equipment Corporation for the PDP-11 series of 16-bit minicomputers. The first version of RSTS was implemented in 1970 by DEC software engineers that developed the TSS-8 time-sharing operating system for the PDP-8. The last version of RSTS was released in September 1992. RSTS-11 and RSTS/E are usually referred to just as "RSTS" and this article will generally use the shorter form. RSTS-11 supports the BASIC programming language, an extended version called BASIC-PLUS, developed under contract by Evans Griffiths & Hart of Boston. Starting with RSTS/E version 5B, DEC added support for additional programming languages by emulating the execution environment of the RT-11 and RSX-11 operating systems.
A machine code monitor is software that allows a user to enter commands to view and change memory locations on a computer, with options to load and save memory contents from/to secondary storage. Some full-featured machine code monitors provide detailed control ("single-stepping") of the execution of machine language programs, and include absolute-address code assembly and disassembly capabilities.
The IBM 1130 Computing System, introduced in 1965, was IBM's least expensive computer at that time. A binary 16-bit machine, it was marketed to price-sensitive, computing-intensive technical markets, like education and engineering, succeeding the decimal IBM 1620 in that market segment. Typical installations included a 1 megabyte disk drive that stored the operating system, compilers and object programs, with program source generated and maintained on punched cards. Fortran was the most common programming language used, but several others, including APL, were available.
The LGP-30, standing for Librascope General Purpose and then Librascope General Precision, is an early off-the-shelf computer. It was manufactured by the Librascope company of Glendale, California, and sold and serviced by the Royal Precision Electronic Computer Company, a joint venture with the Royal McBee division of the Royal Typewriter Company. The LGP-30 was first manufactured in 1956, at a retail price of $47,000, equivalent to $530,000 in 2023.
The EDUC-8, pronounced "educate", was an early microcomputer kit published by Electronics Australia in a series of articles starting in August 1974 and continuing to August 1975. Electronics Australia initially believed that it was the first such kit, but later discovered that Radio-Electronics had just beaten it with their Mark-8 by one month. However, Electronics Australia staff believed that their TTL design was superior to the Mark-8, as it did not require the purchase of an expensive microprocessor chip.
On-line Debugging Tool (ODT) is a family of several debugger programs developed for Digital Equipment Corporation (DEC) hardware. Various operating systems including OS/8, RT-11, RSX-11, and RSTS/E implement ODT, as did the firmware console of all of the LSI-11-family processors including the 11/03, 11/23/24, 11/53, 11/73, and 11/83/84.
KDF8 was an early British computer built by English Electric as a version of the RCA 501. By producing a software-compatible system, the intention was to reduce time and cost to develop software. However, the lengthy process of developing manufacturing capability meant that the system was soon outpaced by systems from other vendors. Only a few systems were sold during its 5 years of production. Due to the consolidation of the British computer industry, English Electric's computer division became one of the components of what would become ICL.
Program animation or stepping refers to the debugging method of executing code one instruction or line at a time. The programmer may examine the state of the program, machine, and related data before and after execution of a particular line of code. This allows the programmer to evaluate the effects of each statement or instruction in isolation, and thereby gain insight into the behavior of the executing program. Nearly all modern IDEs and debuggers support this mode of execution.
Heathkit's H8 is an Intel 8080A-based microcomputer sold in kit form starting in 1977. The H8 is similar to the S-100 bus computers of the era, and like those machines is often used with the CP/M operating system on floppy disk.
The SDS 9 Series computers are a backward compatible line of transistorized computers produced by Scientific Data Systems in the 1960s and 1970s. This line includes the SDS 910, SDS 920, SDS 925, SDS 930, SDS 940, and the SDS 945. The SDS 9300 is an extension of the 9xx architecture. The 1965 SDS 92 is an incompatible 12-bit system built using monolithic integrated circuits.