UNIVAC LARC

Last updated
UNIVAC LARC at Livermore UNIVAC LARC-BRL61-0959.jpg
UNIVAC LARC at Livermore

The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers. [1]

Contents

LARC supported multiprocessing with two CPUs (called Computers) and an input/output (I/O) Processor (called the Processor). Two LARC machines were built, the first delivered to Livermore in June 1960, and the second to the Navy's David Taylor Model Basin. Both examples had only one Computer, so no multiprocessor LARCs were ever built. [2] Both were decommissioned in the period 1968 to 1969, with Livermore decomissioning their LARC in December 1968 [3] and the Navy's LARC been turned off in April 1969. [4]

The LARC CPUs were able to perform addition in about 4 microseconds, corresponding to about 250 kIPS speed. This made it the fastest computer in the world until 1962 when the IBM 7030 took the title. The 7030 started as IBM's entry to the LARC contest, but Teller chose the simpler Univac over the riskier IBM design.

Description

The LARC was a decimal mainframe computer with 60 bits per word. It used bi-quinary coded decimal arithmetic with five bits per digit (see below), allowing for 11-digit signed numbers. Instructions were 60 bits long, one per word. The basic configuration had 26 general-purpose registers, which could be expanded to 99. The general-purpose registers had an access time of one microsecond.

LARC weighed about 115,000 pounds (58 short tons; 52 t). [5]

The basic configuration had one Computer and LARC could be expanded to a multiprocessor with a second Computer.

The Processor is an independent CPU (with a different instruction set from the Computers) and provides control for 12 to 24 magnetic drum storage units, four to forty UNISERVO II tape drives, two electronic page recorders (a 35mm film camera facing a cathode-ray tube), one or two high-speed printers, and a high-speed punched card reader.

The LARC used core memory banks of 2500 words each, housed four banks per memory cabinet. The basic configuration had eight banks of core (two cabinets), 20,000 words. The memory could be expanded to a maximum of 39 banks of core (ten cabinets with one empty bank), 97,500 words. The core memory had one parity bit on each digit for error checking, resulting in 60 bits per memory word. The core memory had an access time of 8 microseconds and a cycle time of 4 microseconds. Each bank operated independently and could begin a new access in any 4-microsecond cycle when it was not already busy. By properly interleaving accesses to different banks the memory could sustain an effective access time of 4 microseconds on each access (e.g., instruction access in one bank data in another).

LARC circuit board Univac LARC supercomputer circuit board=1960.JPG
LARC circuit board

The data transfer bus connecting the two Computers and the Processor to the core memory was multiplexed to maximize throughput; every 4-microsecond bus cycle was divided into eight 500-nanosecond time slots:

  1. Processor - instructions and data
  2. Computer 1 - instructions
  3. Computer 2 - data
  4. I/O DMA Synchronizer - data
  5. Not Used
  6. Computer 2 - instructions
  7. Computer 1 - data
  8. I/O DMA Synchronizer - data

The core memory system enforces a system of interlocks and priorities to avoid simultaneous access of the same memory bank by multiple sections of the system (the Computers, Processor, and I/O DMA Synchronizers) without conflicts or deadlocks. A memory bank is unavailable for one 4-microsecond cycle after being addressed by any section of the system. If another section attempts to address the same memory bank during this time it is locked out and must wait then try again in the next 4-microsecond cycle. To prevent deadlocks and timeouts in the I/O system the following priorities are enforced:

  1. I/O DMA Synchronizer - highest
  2. Processor
  3. Computers - lowest

If a higher-priority section is locked out in one 4-microsecond cycle, when it tries again in the next 4-microsecond cycle, all lower-priority sections are prevented from beginning a new cycle on that memory bank until the higher-priority section has completed its access.

The LARC's Computers wrote lists of Summary Orders in memory for the Processor to read and interpret by the Processor Control Program (written and supplied by UNIVAC with each system), to request needed I/O. [6]

The LARC was built using surface-barrier transistors, which were already obsolete by the time the first system was delivered. The LARC was a very fast computer for its time. Its addition time was 4 microseconds, multiplication time was 8 microseconds, and the division time was 28 microseconds. It was the fastest computer in 196061, until the IBM 7030 took the title.

LARC one-digit numeric code

In the basic five-bit biquinary code of the UNIVAC-LARC, 15 combinations are allowed, any one of which may be stored may be stored in any digit position in storage. [7]

BIT POSITIONS

5 4 3 2 1

CHARACTER
1 1 1 0 0\ (ignore)
0 0 1 0 0^ (space)
0 0 0 1 0- (minus)
1 0 0 0 00
0 0 0 0 11
1 0 0 1 12
0 0 1 1 13
1 0 1 1 04
0 1 0 0 05
1 1 0 0 16
0 1 0 1 17
1 1 1 1 18
0 1 1 1 09
1 1 0 1 0. (period)
1 0 1 0 1+ (plus)

See also

Related Research Articles

Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).

<span class="mw-page-title-main">IBM 1620</span> Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

<span class="mw-page-title-main">UNIVAC I</span> First general-purpose computer designed for business application (1951)

The UNIVAC I was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".

<span class="mw-page-title-main">IBM 650</span> Vacuum-tube 1950s computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass-produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most popular computer of the 1950s.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">Drum memory</span> Magnetic data storage device

Drum memory was a magnetic data storage device invented by Gustav Tauschek in 1932 in Austria. Drums were widely used in the 1950s and into the 1960s as computer memory.

<span class="mw-page-title-main">IBM 7030 Stretch</span> First IBM supercomputer using dedicated transistors

The IBM 7030, also known as Stretch, was IBM's first transistorized supercomputer. It was the fastest computer in the world from 1961 until the first CDC 6600 became operational in 1964.

<span class="mw-page-title-main">IBM 701</span> Vacuum-tube computer system

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in development, was IBM’s first commercial scientific computer and its first series production mainframe computer, which was announced to the public on May 21, 1952. It was designed and developed by Jerrier Haddad and Nathaniel Rochester and was based on the IAS machine at Princeton.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.

<span class="mw-page-title-main">IBM 700/7000 series</span> Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

KDF9 was an early British 48-bit computer designed and built by English Electric. The first machine came into service in 1964 and the last of 29 machines was decommissioned in 1980 at the National Physical Laboratory. The KDF9 was designed for, and used almost entirely in, the mathematical and scientific processing fields – in 1967, nine were in use in UK universities and technical colleges. The KDF8, developed in parallel, was aimed at commercial processing workloads.

In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word is an important characteristic of any specific processor design or computer architecture.

The UNIVAC III, designed as an improved transistorized replacement for the vacuum tube UNIVAC I and UNIVAC II computers. The project was started by the Philadelphia division of Remington Rand UNIVAC in 1958 with the initial announcement of the system been made in the Spring of 1960, however as this division was heavily focused on the UNIVAC LARC project the shipment of the system was delayed until June 1962, with Westinghouse agreeing to furnish system programing and marketing on June 1, 1962. It was designed to be compatible for all data formats. However the word size and instruction set were completely different; this presented significant difficulty as all programs had to be rewritten, so many customers switched to different vendors instead of upgrading existing UNIVACs.

In computing, channel I/O is a high-performance input/output (I/O) architecture that is implemented in various forms on a number of computer architectures, especially on mainframe computers. In the past, channels were generally implemented with custom devices, variously named channel, I/O processor, I/O controller, I/O synchronizer, or DMA controller.

<span class="mw-page-title-main">UNIVAC 1050</span>

The UNIVAC 1050 was a variable word-length decimal and binary computer. It was initially announced in May 1962 as an off-line input-output processor for larger UNIVAC systems.

<span class="mw-page-title-main">CDC 160 series</span> Minicomputer

The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.

<span class="mw-page-title-main">RCA Spectra 70</span> Series of mainframe computers manufactured by RCA starting in 1965

The RCA Spectra 70 is a line of electronic data processing (EDP) equipment that was manufactured by the Radio Corporation of America’s computer division beginning in April 1965. The Spectra 70 line included several CPU models, various configurations of core memory, mass-storage devices, terminal equipment, and a variety of specialized interface equipment.

<span class="mw-page-title-main">Atlas (computer)</span> Supercomputer of the 1960s

The Atlas Computer was one of the world's first supercomputers, in use from 1962 to 1972. Atlas' capacity promoted the saying that when it went offline, half of the United Kingdom's computer capacity was lost. It is notable for being the first machine with virtual memory using paging techniques; this approach quickly spread, and is now ubiquitous.

<span class="mw-page-title-main">Vacuum-tube computer</span> Earliest electronic computer design

A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.

Philco was one of the pioneers of transistorized computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.

References

  1. The Remington Rand Univac LARC
  2. George Gray (March 1999). "Some Burroughs Transistor Computers". Unisys History Newsletter. Vol. 3, no. 1. Archived from the original on October 1, 2016.
  3. "Were Early Giant Computers a Success?" (PDF). Datamation. April 1969. pp. 77–82. After their installation, the two systems remained in continuous use until December 1968, when the Lawrence Radiation Laboratory retired its LARC system which had been operated on a 7-day-per-week, 24-hour-per-day schedule.
  4. Smith, Ruth C. (1974). "Special Libraries, February 1974". Special Libraries. 65 (2): 61–65. Retrieved 5 June 2024.
  5. Weik, Martin H. (Mar 1961). "UNIVAC LARC". ed-thelen.org. A Third Survey of Domestic Electronic Digital Computing Systems.
  6. Summary Orders for a Processor Program, UNIVAC LARC Programming. UNIVAC. pp. 1–5.
  7. General Description The UNIVAC®-LARC System. UNIVAC. pp. 6–7.

Further reading

Records
Preceded by World's most powerful computer
1960–1961
Succeeded by