IBM Stretch | |
---|---|
Design | |
Manufacturer | IBM |
Designer | Gene Amdahl |
Release date | May 1961 |
Units sold | 9 |
Price | US$7,780,000 (equivalent to $79,320,000in 2023) |
Casing | |
Weight | 70,000 pounds (35 short tons; 32 t) [1] |
Power | 100 kW [1] @ 110 V |
System | |
Operating system | MCP |
CPU | 64-bit processor |
Memory | 2048 kilobytes (262,144 x 64 bits) [1] |
MIPS | 1.2 MIPS |
The IBM 7030, also known as Stretch, was IBM's first transistorized supercomputer. It was the fastest computer in the world from 1961 until the first CDC 6600 became operational in 1964. [2] [3]
Originally designed to meet a requirement formulated by Edward Teller at Lawrence Livermore National Laboratory, the first example was delivered to Los Alamos National Laboratory in 1961, and a second customized version, the IBM 7950 Harvest, to the National Security Agency in 1962. The Stretch at the Atomic Weapons Research Establishment at Aldermaston, England was heavily used by researchers there and at AERE Harwell, but only after the development of the S2 Fortran Compiler which was the first to add dynamic arrays, and which was later ported to the Ferranti Atlas of Atlas Computer Laboratory at Chilton. [4] [5]
The 7030 was much slower than expected and failed to meet its aggressive performance goals. IBM was forced to drop its price from $13.5 million to only $7.78 million and withdrew the 7030 from sales to customers beyond those having already negotiated contracts. PC World magazine named Stretch one of the biggest project management failures in IT history. [6]
Within IBM, being eclipsed by the smaller Control Data Corporation seemed hard to accept. [7] The project lead, Stephen W. Dunwell, [8] was initially made a scapegoat for his role in the "failure", [9] but as the success of the IBM System/360 became obvious, he was given an official apology and, in 1966 was made an IBM Fellow. [10]
In spite of Stretch's failure to meet its own performance goals, it served as the basis for many of the design features of the successful IBM System/360, which was announced in 1964 and first shipped in 1965.
In early 1955, Dr. Edward Teller of the University of California Radiation Laboratory wanted a new scientific computing system for three-dimensional hydrodynamic calculations. Proposals were requested from IBM and UNIVAC for this new system, to be called Livermore Automatic Reaction Calculator or LARC. According to IBM executive Cuthbert Hurd, such a system would cost roughly $2.5 million and would run at one to two MIPS. [11] : 12 Delivery was to be two to three years after the contract was signed.
At IBM, a small team at Poughkeepsie including John Griffith and Gene Amdahl worked on the design proposal. Just after they finished and were about to present the proposal, Ralph Palmer stopped them and said, "It's a mistake." [11] : 12 The proposed design would have been built with either point-contact transistors or surface-barrier transistors, both likely to be soon outperformed by the then newly invented diffusion transistor. [11] : 12
IBM returned to Livermore and stated that they were withdrawing from the contract, and instead proposed a dramatically better system, "We are not going to build that machine for you; we want to build something better! We do not know precisely what it will take but we think it will be another million dollars and another year, and we do not know how fast it will run but we would like to shoot for ten million instructions per second." [11] : 13 Livermore was not impressed, and in May 1955 they announced that UNIVAC had won the LARC contract, now called the Livermore Automatic Research Computer. LARC would eventually be delivered in June 1960. [12]
In September 1955, fearing that Los Alamos National Laboratory might also order a LARC, IBM submitted a preliminary proposal for a high-performance binary computer based on the improved version of the design that Livermore had rejected, which they received with interest. In January 1956, Project Stretch was formally initiated. In November 1956, IBM won the contract with the aggressive performance goal of a "speed at least 100 times the IBM 704" (i.e. 4 MIPS). Delivery was slated for 1960.
During design, it proved necessary to reduce the clock speeds, making it clear that Stretch could not meet its aggressive performance goals, but estimates of performance ranged from 60 to 100 times the IBM 704. In 1960, the price of $13.5 million was set for the IBM 7030. In 1961, actual benchmarks indicated that the performance of the IBM 7030 was only about 30 times the IBM 704 (i.e. 1.2 MIPS), causing considerable embarrassment for IBM. In May 1961, Thomas J. Watson Jr. announced a price cut of all 7030s under negotiation to $7.78 million and immediate withdrawal of the product from further sales.
Its floating-point addition time is 1.38–1.50 microseconds, multiplication time is 2.48–2.70 microseconds, and division time is 9.00–9.90 microseconds.
While the IBM 7030 was not considered successful, it spawned many technologies incorporated in future machines that were highly successful. The Standard Modular System transistor logic was the basis for the IBM 7090 line of scientific computers, the IBM 7070 and 7080 business computers, the IBM 7040 and IBM 1400 lines, and the IBM 1620 small scientific computer; the 7030 used about 170,000 transistors. The IBM 7302 Model I Core Storage units were also used in the IBM 7090, IBM 7070 and IBM 7080. Multiprogramming, memory protection, generalized interrupts, the eight-bit byte for I/O [lower-alpha 1] were all concepts later incorporated in the IBM System/360 line of computers as well as most later central processing units (CPU).
Stephen Dunwell, the project manager who became a scapegoat when Stretch failed commercially, pointed out soon after the phenomenally successful 1964 launch of System/360 that most of its core concepts were pioneered by Stretch. [13] By 1966, he had received an apology and been made an IBM Fellow, a high honor that carried with it resources and authority to pursue one's desired research. [13]
Instruction pipelining, prefetch and decoding, and memory interleaving were used in later supercomputer designs such as the IBM System/360 Models 91, 95 and 195, and the IBM 3090 series as well as computers from other manufacturers. As of 2021 [update] , these techniques are still used in most advanced microprocessors, starting with the 1990s generation that included the Intel Pentium and the Motorola/IBM PowerPC, as well as in many embedded microprocessors and microcontrollers from various manufacturers.
The 7030 CPU uses emitter-coupled logic (originally called current-steering logic) [14] on 18 types of Standard Modular System (SMS) cards. It uses 4,025 double cards (as shown) and 18,747 single cards, holding 169,100 transistors, requiring a total of 21 kW power. [15] : 54 It uses high-speed NPN and PNP germanium drift transistors, with cut-off frequency over 100 MHz, and using ~50 mW each. [15] : 57 Some third level circuits use a 3rd voltage level. Each logic level has a delay of about 20 ns. To gain speed in critical areas emitter-follower logic is used to reduce the delay to about 10 ns. [15] : 55
The Lawrence Livermore Laboratory's IBM 7030 (except for its core memory) and portions of the MITRE Corporation/Brigham Young University IBM 7030 now reside in the Computer History Museum collection, in Mountain View, California.
Instructions are either 32-bit or 64-bit. [18]
The registers overlay the first 32 addresses of memory as shown. [19]
! Address | Mnemonic | Register | Stored in: |
---|---|---|---|
0 | $Z | 64-bit zero: always reads as zero, cannot be changed by writes | Main core storage |
1 | $IT | interval timer (bits 0..18): decremented at 1024 Hz, recycles about every 8.5 minutes, at zero it turns on the "time signal indicator" in the indicator register | Index core storage |
$TC | 36-bit time clock (bits 28..63): count of 1024 Hz ticks, bits 38..63 increment once per second, recycles each ~777 days. | ||
2 | $IA | 18-bit interruption address | Main core storage |
3 | $UB | 18-bit upper boundary address (bits 0-17) | Transistor register |
$LB | 18-bit lower boundary address (bits 32-49) | ||
1-bit boundary control (bit 57): determines whether addresses within or outside the boundary addresses are protected | |||
4 | 64-bit maintenance bits: only used for maintenance | Main core storage | |
5 | $CA | channel address (bits 12..18): readonly, set by the "exchange", an i/o processor | Transistor register |
6 | $CPUS | other CPU bits (bits 0..18): signaling mechanism for a cluster of up to 20 CPUs | Transistor register |
7 | $LZC | left zeroes count (bits 17..23): number of leading zero bits from a connective result or floating point operation | Transistor register |
$AOC | all-ones count (bits 44..50): count of bits set in connective result or decimal multiple or divide | ||
8 | $L | Left half of 128-bit accumulator | Transistor register |
9 | $R | Right half of 128-bit accumulator | |
10 | $SB | accumulator sign byte (bits 0..7) | |
11 | $IND | indicator register (bits 0..19) | Transistor register |
12 | $MASK | 64-bit mask register: bits 0..19 always 1, bits 20..47 writable, bits 48..63 always 0 | Transistor register |
13 | $RM | 64-bit remainder register: set by integer and floating point divide instructions only | Main core storage |
14 | $FT | 64-bit factor register: changed only by the "load factor" instruction | Main core storage |
15 | $TR | 64-bit transit register | Main core storage |
16 ... 31 | $X0 ... $X15 | 64-bit index registers (sixteen) | Index core storage |
The accumulator and index registers operate in sign-and-magnitude format.
Main memory is 16K to 256K 64-bit binary words, in banks of 16K.
The memory was immersion oil-heated/cooled to stabilize its operating characteristics.
IBM mainframes are large computer systems produced by IBM since 1952. During the 1960s and 1970s, IBM dominated the computer market with the 7000 series and the later System/360, followed by the System/370. Current mainframe computers in IBM's line of business computers are developments of the basic design of the System/360.
The IBM System/360 (S/360) is a family of mainframe computer systems announced by IBM on April 7, 1964, and delivered between 1965 and 1978. They were the first family of computers designed to cover both commercial and scientific applications and a complete range of applications from small to large. The design distinguished between architecture and implementation, allowing IBM to release a suite of compatible designs at different prices. All but the only partially compatible Model 44 and the most expensive systems use microcode to implement the instruction set, featuring 8-bit byte addressing and fixed point binary, fixed point decimal and hexadecimal floating-point calculations.
Control Data Corporation (CDC) was a mainframe and supercomputer company that in the 1960s was one of the nine major U.S. computer companies, which group included IBM, the Burroughs Corporation, and the Digital Equipment Corporation (DEC), the NCR Corporation (NCR), General Electric, and Honeywell, RCA and UNIVAC. For most of the 1960s, the strength of CDC was the work of the electrical engineer Seymour Cray who developed a series of fast computers, then considered the fastest computing machines in the world; in the 1970s, Cray left the Control Data Corporation and founded Cray Research (CRI) to design and make supercomputers. In 1988, after much financial loss, the Control Data Corporation began withdrawing from making computers and sold the affiliated companies of CDC; in 1992, Cray established Control Data Systems, Inc. The remaining affiliate companies of CDC currently do business as the software company Dayforce.
The CDC 6600 was the flagship of the 6000 series of mainframe computer systems manufactured by Control Data Corporation. Generally considered to be the first successful supercomputer, it outperformed the industry's prior recordholder, the IBM 7030 Stretch, by a factor of three. With performance of up to three megaFLOPS, the CDC 6600 was the world's fastest computer from 1964 to 1969, when it relinquished that status to its successor, the CDC 7600.
UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.
The IBM 7090 is a second-generation transistorized version of the earlier IBM 709 vacuum tube mainframe computer that was designed for "large-scale scientific and technological applications". The 7090 is the fourth member of the IBM 700/7000 series scientific computers. The first 7090 installation was in December 1959. In 1960, a typical system sold for $2.9 million or could be rented for $63,500 a month.
The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in development, was IBM’s first commercial scientific computer and its first series production mainframe computer, which was announced to the public on May 21, 1952. It was designed and developed by Jerrier Haddad and Nathaniel Rochester and was based on the IAS machine at Princeton.
The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.
The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers.
The CDC 7600 was designed by Seymour Cray to be the successor to the CDC 6600, extending Control Data's dominance of the supercomputer field into the 1970s. The 7600 ran at 36.4 MHz and had a 65 Kword primary memory using magnetic core and variable-size secondary memory. It was generally about ten times as fast as the CDC 6600 and could deliver about 10 MFLOPS on hand-compiled code, with a peak of 36 MFLOPS. In addition, in benchmark tests in early 1970 it was shown to be slightly faster than its IBM rival, the IBM System/360, Model 195. When the system was released in 1967, it sold for around $5 million in base configurations, and considerably more as options and features were added.
The CDC Cyber range of mainframe-class supercomputers were the primary products of Control Data Corporation (CDC) during the 1970s and 1980s. In their day, they were the computer architecture of choice for scientific and mathematically intensive computing. They were used for modeling fluid flow, material science stress analysis, electrochemical machining analysis, probabilistic analysis, energy and academic computing, radiation shielding modeling, and other applications. The lineup also included the Cyber 18 and Cyber 1000 minicomputers. Like their predecessor, the CDC 6600, they were unusual in using the ones' complement binary representation.
Plug compatible refers to "hardware that is designed to perform exactly like another vendor's product." The term PCM was originally applied to manufacturers who made replacements for IBM peripherals. Later this term was used to refer to IBM-compatible computers.
The CDC 6000 series is a discontinued family of mainframe computers manufactured by Control Data Corporation in the 1960s. It consisted of the CDC 6200, CDC 6300, CDC 6400, CDC 6500, CDC 6600 and CDC 6700 computers, which were all extremely rapid and efficient for their time. Each is a large, solid-state, general-purpose, digital computer that performs scientific and business data processing as well as multiprogramming, multiprocessing, Remote Job Entry, time-sharing, and data management tasks under the control of the operating system called SCOPE. By 1970 there also was a time-sharing oriented operating system named KRONOS. They were part of the first generation of supercomputers. The 6600 was the flagship of Control Data's 6000 series.
The surface-barrier transistor is a type of transistor developed by Philco in 1953 as an improvement to the alloy-junction transistor and the earlier point-contact transistor. Like the modern Schottky transistor, it offered much higher speed than earlier transistors and used metal–semiconductor junctions, but unlike the schottky transistor, both junctions were metal–semiconductor junctions.
The ACS-1 and ACS-360 are two related supercomputers designed by IBM as part of the Advanced Computing Systems project from 1965 to 1969. Although the designs were never finished and no models ever went into production, the project spawned a number of organizational techniques and architectural innovations that have since become incorporated into nearly all high-performance computers in existence today. Many of the ideas resulting from the project directly influenced the development of the IBM RS/6000 and, more recently, have contributed to the Explicitly Parallel Instruction Computing (EPIC) computing paradigm used by Intel and HP in the Itanium processors.
The Atlas was one of the world's first supercomputers, in use from 1962 to 1972. Atlas's capacity promoted the saying that when it went offline, half of the United Kingdom's computer capacity was lost. It is notable for being the first machine with virtual memory using paging techniques; this approach quickly spread, and is now ubiquitous.
The history of supercomputing goes back to the 1960s when a series of computers at Control Data Corporation (CDC) were designed by Seymour Cray to use innovative designs and parallelism to achieve superior computational peak performance. The CDC 6600, released in 1964, is generally considered the first supercomputer. However, some earlier computers were considered supercomputers for their day such as the 1954 IBM NORC in the 1950s, and in the early 1960s, the UNIVAC LARC (1960), the IBM 7030 Stretch (1962), and the Manchester Atlas (1962), all of which were of comparable power.
The IBM System/360 Model 50 is a member of the IBM System/360 family of computers. The Model 50 was announced in April 1964 with the other initial models of the family, and first shipped in August 1965 to the Bank of America.
Philco was one of the pioneers of transistorized computers, also known as second generation computers. After the company developed the surface barrier transistor, which was much faster than previous point-contact types, it was awarded contracts for military and government computers. Commercialized derivatives of some of these designs became successful business and scientific computers. The TRANSAC Model S-1000 was released as a scientific computer. The TRANSAC S-2000 mainframe computer system was first produced in 1958, and a family of compatible machines, with increasing performance, was released over the next several years.