This article needs additional citations for verification .(May 2016) |
Clock cycle Instr. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | IF | ID | EX | MEM | WB | ||
2 | IF | ID | EX | MEM | WB | ||
3 | IF | ID | EX | MEM | WB | ||
4 | IF | ID | EX | MEM | |||
5 | IF | ID | EX | ||||
(IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access, WB = Register write back). In the fourth clock cycle (the green column), the earliest instruction is in MEM stage, and the latest instruction has not yet entered the pipeline. Contents |
In computer engineering, instruction pipelining is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions processed in parallel.
In a pipelined computer, instructions flow through the central processing unit (CPU) in stages. For example, it might have one stage for each step of the von Neumann cycle: Fetch the instruction, fetch the operands, do the instruction, write the results. A pipelined computer usually has "pipeline registers" after each stage. These store information from the instruction and calculations so that the logic gates of the next stage can do the next step.
This arrangement lets the CPU complete an instruction on each clock cycle. It is common for even-numbered stages to operate on one edge of the square-wave clock, while odd-numbered stages operate on the other edge. This allows more CPU throughput than a multicycle computer at a given clock rate, but may increase latency due to the added overhead of the pipelining process itself. Also, even though the electronic logic has a fixed maximum speed, a pipelined computer can be made faster or slower by varying the number of stages in the pipeline. With more stages, each stage does less work, and so the stage has fewer delays from the logic gates and could run at a higher clock rate.
A pipelined model of computer is often the most economical, when cost is measured as logic gates per instruction per second. At each instant, an instruction is in only one pipeline stage, and on average, a pipeline stage is less costly than a multicycle computer. Also, when made well, most of the pipelined computer's logic is in use most of the time. In contrast, out of order computers usually have large amounts of idle logic at any given instant. Similar calculations usually show that a pipelined computer uses less energy per instruction.
However, a pipelined computer is usually more complex and more costly than a comparable multicycle computer. It typically has more logic gates, registers and a more complex control unit. In a like way, it might use more total energy, while using less energy per instruction. Out of order CPUs can usually do more instructions per second because they can do several instructions at once.
In a pipelined computer, the control unit arranges for the flow to start, continue, and stop as a program commands. The instruction data is usually passed in pipeline registers from one stage to the next, with a somewhat separated piece of control logic for each stage. The control unit also assures that the instruction in each stage does not harm the operation of instructions in other stages. For example, if two stages must use the same piece of data, the control logic assures that the uses are done in the correct sequence.
When operating efficiently, a pipelined computer will have an instruction in each stage. It is then working on all of those instructions at the same time. It can finish about one instruction for each cycle of its clock. But when a program switches to a different sequence of instructions, the pipeline sometimes must discard the data in process and restart. This is called a "stall."
Much of the design of a pipelined computer prevents interference between the stages and reduces stalls.
The number of dependent steps varies with the machine architecture. For example:
This article needs additional citations for verification .(October 2020) |
As the pipeline is made "deeper" (with a greater number of dependent steps), a given step can be implemented with simpler circuitry, which may let the processor clock run faster. [3] Such pipelines may be called superpipelines. [4]
A processor is said to be fully pipelined if it can fetch an instruction on every cycle. Thus, if some instructions or conditions require delays that inhibit fetching new instructions, the processor is not fully pipelined.
This section needs additional citations for verification .(March 2019) |
Seminal uses of pipelining were in the ILLIAC II project and the IBM Stretch project, though a simple version was used earlier in the Z1 in 1939 and the Z3 in 1941. [5]
Pipelining began in earnest in the late 1970s in supercomputers such as vector processors and array processors.[ citation needed ] One of the early supercomputers was the Cyber series built by Control Data Corporation. Its main architect, Seymour Cray, later headed Cray Research. Cray developed the XMP line of supercomputers, using pipelining for both multiply and add/subtract functions. Later, Star Technologies added parallelism (several pipelined functions working in parallel), developed by Roger Chen. In 1984, Star Technologies added the pipelined divide circuit developed by James Bradley. By the mid-1980s, pipelining was used by many different companies around the world.[ citation needed ]
Pipelining was not limited to supercomputers. In 1976, the Amdahl Corporation's 470 series general purpose mainframe had a 7-step pipeline, and a patented branch prediction circuit.[ citation needed ]
The model of sequential execution assumes that each instruction completes before the next one begins; this assumption is not true on a pipelined processor. A situation where the expected result is problematic is known as a hazard. Imagine the following two register instructions to a hypothetical processor:
1: add 1 to R5 2: copy R5 to R6
If the processor has the 5 steps listed in the initial illustration (the 'Basic five-stage pipeline' at the start of the article), instruction 1 would be fetched at time t1 and its execution would be complete at t5. Instruction 2 would be fetched at t2 and would be complete at t6. The first instruction might deposit the incremented number into R5 as its fifth step (register write back) at t5. But the second instruction might get the number from R5 (to copy to R6) in its second step (instruction decode and register fetch) at time t3. It seems that the first instruction would not have incremented the value by then. The above code invokes a hazard.
Writing computer programs in a compiled language might not raise these concerns, as the compiler could be designed to generate machine code that avoids hazards.
In some early DSP and RISC processors, the documentation advises programmers to avoid such dependencies in adjacent and nearly adjacent instructions (called delay slots), or declares that the second instruction uses an old value rather than the desired value (in the example above, the processor might counter-intuitively copy the unincremented value), or declares that the value it uses is undefined. The programmer may have unrelated work that the processor can do in the meantime; or, to ensure correct results, the programmer may insert NOPs into the code, partly negating the advantages of pipelining.
Pipelined processors commonly use three techniques to work as expected when the programmer assumes that each instruction completes before the next one begins:
A branch out of the normal instruction sequence often involves a hazard. Unless the processor can give effect to the branch in a single time cycle, the pipeline will continue fetching instructions sequentially. Such instructions cannot be allowed to take effect because the programmer has diverted control to another part of the program.
A conditional branch is even more problematic. The processor may or may not branch, depending on a calculation that has not yet occurred. Various processors may stall, may attempt branch prediction, and may be able to begin to execute two different program sequences (eager execution), each assuming the branch is or is not taken, discarding all work that pertains to the incorrect guess. [lower-alpha 1]
A processor with an implementation of branch prediction that usually makes correct predictions can minimize the performance penalty from branching. However, if branches are predicted poorly, it may create more work for the processor, such as flushing from the pipeline the incorrect code path that has begun execution before resuming execution at the correct location.
Programs written for a pipelined processor deliberately avoid branching to minimize possible loss of speed. For example, the programmer can handle the usual case with sequential execution and branch only on detecting unusual cases. Using programs such as gcov to analyze code coverage lets the programmer measure how often particular branches are actually executed and gain insight with which to optimize the code. In some cases, a programmer can handle both the usual case and unusual case with branch-free code.
To the right is a generic pipeline with four stages: fetch, decode, execute and write-back. The top gray box is the list of instructions waiting to be executed, the bottom gray box is the list of instructions that have had their execution completed, and the middle white box is the pipeline.
The execution is as follows:
Clock | Execution |
---|---|
0 |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
A pipelined processor may deal with hazards by stalling and creating a bubble in the pipeline, resulting in one or more cycles in which nothing useful happens.
In the illustration at right, in cycle 3, the processor cannot decode the purple instruction, perhaps because the processor determines that decoding depends on results produced by the execution of the green instruction. The green instruction can proceed to the Execute stage and then to the Write-back stage as scheduled, but the purple instruction is stalled for one cycle at the Fetch stage. The blue instruction, which was due to be fetched during cycle 3, is stalled for one cycle, as is the red instruction after it.
Because of the bubble (the blue ovals in the illustration), the processor's Decode circuitry is idle during cycle 3. Its Execute circuitry is idle during cycle 4 and its Write-back circuitry is idle during cycle 5.
When the bubble moves out of the pipeline (at cycle 6), normal execution resumes. But everything now is one cycle late. It will take 8 cycles (cycle 1 through 8) rather than 7 to completely execute the four instructions shown in colors. [lower-alpha 2]
A central processing unit (CPU), also called a central processor, main processor, or just processor, is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).
The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. A CU typically uses a binary decoder to convert coded instructions into timing and control signals that direct the operation of the other units.
In processor design, microcode serves as an intermediary layer situated between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer, also known as its machine code. It consists of a set of hardware-level instructions that implement the higher-level machine code instructions or control internal finite-state machine sequencing in many digital processing components. While microcode is utilized in general-purpose CPUs in contemporary desktops, it also functions as a fallback path for scenarios that the faster hardwired control unit is unable to manage.
A superscalar processor is a CPU that implements a form of parallelism called instruction-level parallelism within a single processor. In contrast to a scalar processor, which can execute at most one single instruction per clock cycle, a superscalar processor can execute more than one instruction during a clock cycle by simultaneously dispatching multiple instructions to different execution units on the processor. It therefore allows more throughput than would otherwise be possible at a given clock rate. Each execution unit is not a separate processor, but an execution resource within a single CPU such as an arithmetic logic unit.
The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, is a processor register that indicates where a computer is in its program sequence.
In computer architecture, a delay slot is an instruction slot being executed without the effects of a preceding instruction. The most common form is a single arbitrary instruction located immediately after a branch instruction on a RISC or DSP architecture; this instruction will execute even if the preceding branch is taken. This makes the instruction execute out-of-order compared to its location in the original assembler language code.
In the domain of central processing unit (CPU) design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control hazards.
In the history of computer hardware, some early reduced instruction set computer central processing units used a very similar architectural solution, now called a classic RISC pipeline. Those CPUs were: MIPS, SPARC, Motorola 88000, and later the notional CPU DLX invented for education.
In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch will go before this is known definitively. The purpose of the branch predictor is to improve the flow in the instruction pipeline. Branch predictors play a critical role in achieving high performance in many modern pipelined microprocessor architectures.
Execution in computer and software engineering is the process by which a computer or virtual machine interpret and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a "fetch–decode–execute" cycle for each instruction done by control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.
The instruction cycle is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.
In computer engineering, out-of-order execution is a paradigm used in high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently.
A branch is an instruction in a computer program that can cause a computer to begin executing a different instruction sequence and thus deviate from its default behavior of executing instructions in order. Branch may also refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction. Branch instructions are used to implement control flow in program loops and conditionals.
In computing, a pipeline, also known as a data pipeline, is a set of data processing elements connected in series, where the output of one element is the input of the next one. The elements of a pipeline are often executed in parallel or in time-sliced fashion. Some amount of buffer storage is often inserted between elements.
In electronics, computer science and computer engineering, microarchitecture, also called computer organization and sometimes abbreviated as µarch or uarch, is the way a given instruction set architecture (ISA) is implemented in a particular processor. A given ISA may be implemented with different microarchitectures; implementations may vary due to different goals of a given design or due to shifts in technology.
In computer architecture, a transport triggered architecture (TTA) is a kind of processor design in which programs directly control the internal transport buses of a processor. Computation happens as a side effect of data transports: writing data into a triggering port of a functional unit triggers the functional unit to start a computation. This is similar to what happens in a systolic array. Due to its modular structure, TTA is an ideal processor template for application-specific instruction set processors (ASIP) with customized datapath but without the inflexibility and design cost of fixed function hardware accelerators.
In computer central processing units, micro-operations are detailed low-level instructions used in some designs to implement complex machine instructions.
In the design of pipelined computer processors, a pipeline stall is a delay in execution of an instruction in order to resolve a hazard.
Latency oriented processor architecture is the microarchitecture of a microprocessor designed to serve a serial computing thread with a low latency. This is typical of most central processing units (CPU) being developed since the 1970s. These architectures, in general, aim to execute as many instructions as possible belonging to a single serial thread, in a given window of time; however, the time to execute a single instruction completely from fetch to retire stages may vary from a few cycles to even a few hundred cycles in some cases. Latency oriented processor architectures are the opposite of throughput-oriented processors which concern themselves more with the total throughput of the system, rather than the service latencies for all individual threads that they work on.
In computer architecture, a trace cache or execution trace cache is a specialized instruction cache which stores the dynamic stream of instructions known as trace. It helps in increasing the instruction fetch bandwidth and decreasing power consumption by storing traces of instructions that have already been fetched and decoded. A trace processor is an architecture designed around the trace cache and processes the instructions at trace level granularity. The formal mathematical theory of traces is described by trace monoids.