In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.
NTMs are sometimes used in thought experiments to examine the abilities and limits of computers. One of the most important open problems in theoretical computer science is the P versus NP problem, which (among other equivalent formulations) concerns the question of how difficult it is to simulate nondeterministic computation with a deterministic computer.
In essence, a Turing machine is imagined to be a simple computer that reads and writes symbols one at a time on an endless tape by strictly following a set of rules. It determines what action it should perform next according to its internal state and what symbol it currently sees. An example of one of a Turing Machine's rules might thus be: "If you are in state 2 and you see an 'A', then change it to 'B', move left, and switch to state 3."
In a deterministic Turing machine (DTM), the set of rules prescribes at most one action to be performed for any given situation.
A deterministic Turing machine has a transition function that, for a given state and symbol under the tape head, specifies three things:
For example, an X on the tape in state 3 might make the DTM write a Y on the tape, move the head one position to the right, and switch to state 5.
In contrast to a deterministic Turing machine, in a nondeterministic Turing machine (NTM) the set of rules may prescribe more than one action to be performed for any given situation. For example, an X on the tape in state 3 might allow the NTM to:
or
How does the NTM "know" which of these actions it should take? There are two ways of looking at it. One is to say that the machine is the "luckiest possible guesser"; it always picks a transition that eventually leads to an accepting state, if there is such a transition. The other is to imagine that the machine "branches" into many copies, each of which follows one of the possible transitions. Whereas a DTM has a single "computation path" that it follows, an NTM has a "computation tree". If at least one branch of the tree halts with an "accept" condition, the NTM accepts the input.
A nondeterministic Turing machine can be formally defined as a six-tuple , where
The difference with a standard (deterministic) Turing machine is that, for deterministic Turing machines, the transition relation is a function rather than just a relation.
Configurations and the yields relation on configurations, which describes the possible actions of the Turing machine given any possible contents of the tape, are as for standard Turing machines, except that the yields relation is no longer single-valued. (If the machine is deterministic, the possible computations are all prefixes of a single, possibly infinite, path.)
The input for an NTM is provided in the same manner as for a deterministic Turing machine: the machine is started in the configuration in which the tape head is on the first character of the string (if any), and the tape is all blank otherwise.
An NTM accepts an input string if and only if at least one of the possible computational paths starting from that string puts the machine into an accepting state. When simulating the many branching paths of an NTM on a deterministic machine, we can stop the entire simulation as soon as any branch reaches an accepting state.
As a mathematical construction used primarily in proofs, there are a variety of minor variations on the definition of an NTM, but these variations all accept equivalent languages.
The head movement in the output of the transition relation is often encoded numerically instead of using letters to represent moving the head Left (-1), Stationary (0), and Right (+1); giving a transition function output of . It is common to omit the stationary (0) output, [1] and instead insert the transitive closure of any desired stationary transitions.
Some authors add an explicit reject state, [2] which causes the NTM to halt without accepting. This definition still retains the asymmetry that any nondeterministic branch can accept, but every branch must reject for the string to be rejected.
Any computational problem that can be solved by a DTM can also be solved by a NTM, and vice versa. However, it is believed that in general the time complexity may not be the same.
NTMs include DTMs as special cases, so every computation that can be carried out by a DTM can also be carried out by the equivalent NTM.
It might seem that NTMs are more powerful than DTMs, since they can allow trees of possible computations arising from the same initial configuration, accepting a string if any one branch in the tree accepts it. However, it is possible to simulate NTMs with DTMs, and in fact this can be done in more than one way.
One approach is to use a DTM of which the configurations represent multiple configurations of the NTM, and the DTM's operation consists of visiting each of them in turn, executing a single step at each visit, and spawning new configurations whenever the transition relation defines multiple continuations.
Another construction simulates NTMs with 3-tape DTMs, of which the first tape always holds the original input string, the second is used to simulate a particular computation of the NTM, and the third encodes a path in the NTM's computation tree. [3] The 3-tape DTMs are easily simulated with a normal single-tape DTM.
In the second construction, the constructed DTM effectively performs a breadth-first search of the NTM's computation tree, visiting all possible computations of the NTM in order of increasing length until it finds an accepting one. Therefore, the length of an accepting computation of the DTM is, in general, exponential in the length of the shortest accepting computation of the NTM. This is believed to be a general property of simulations of NTMs by DTMs. The P = NP problem, the most famous unresolved question in computer science, concerns one case of this issue: whether or not every problem solvable by a NTM in polynomial time is necessarily also solvable by a DTM in polynomial time.
An NTM has the property of bounded nondeterminism. That is, if an NTM always halts on a given input tape T then it halts in a bounded number of steps, and therefore can only have a bounded number of possible configurations.
Because quantum computers use quantum bits, which can be in superpositions of states, rather than conventional bits, there is sometimes a misconception that quantum computers are NTMs. [4] However, it is believed by experts (but has not been proven) that the power of quantum computers is, in fact, incomparable to that of NTMs; that is, problems likely exist that an NTM could efficiently solve that a quantum computer cannot and vice versa. [5] [ better source needed ] In particular, it is likely that NP-complete problems are solvable by NTMs but not by quantum computers in polynomial time.
Intuitively speaking, while a quantum computer can indeed be in a superposition state corresponding to all possible computational branches having been executed at the same time (similar to an NTM), the final measurement will collapse the quantum computer into a randomly selected branch. This branch then does not, in general, represent the sought-for solution, unlike the NTM, which is allowed to pick the right solution among the exponentially many branches.
In the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack.
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm.
In theoretical computer science, the busy beaver game aims at finding a terminating program of a given size that either produces the most output possible, or runs for the longest number of steps. Since an endlessly looping program producing infinite output or running for infinite time is easily conceived, such programs are excluded from the game. Rather than traditional programming languages, the programs used in the game are n-state Turing machines, one of the first mathematical models of computation.
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science with close connections to mathematical logic. The word automata comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a finite automaton (FA) or finite-state machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states and transitions. As the automaton sees a symbol of input, it makes a transition to another state, according to its transition function, which takes the previous state and current input symbol as its arguments.
In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can—unlike a deterministic Turing Machine—have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution.
In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.
In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run. In search of the simplest models to capture finite-state machines, Warren McCulloch and Walter Pitts were among the first researchers to introduce a concept similar to finite automata in 1943.
In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if
In computational complexity theory, the linear speedup theorem for Turing machines states that given any real c > 0 and any k-tape Turing machine solving a problem in time f(n), there is another k-tape machine that solves the same problem in time at most f(n)/c + 2n + 3, where k > 1. If the original machine is non-deterministic, then the new machine is also non-deterministic. The constants 2 and 3 in 2n + 3 can be lowered, for example, to n + 2.
In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.
In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981.
In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings.
In automata theory, a deterministic pushdown automaton is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages.
In computer science, in particular in automata theory, a two-way finite automaton is a finite automaton that is allowed to re-read its input.
A quantum Turing machine (QTM) or universal quantum computer is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algorithm can be expressed formally as a particular quantum Turing machine. However, the computationally equivalent quantum circuit is a more common model.
A queue machine, queue automaton, or pullup automaton (PUA) is a finite state machine with the ability to store and retrieve data from an infinite-memory queue. Its design is similar to a pushdown automaton but differs by replacing the stack with this queue. A queue machine is a model of computation equivalent to a Turing machine, and therefore it can process the same class of formal languages.
A read-only Turing machine or two-way deterministic finite-state automaton (2DFA) is class of models of computability that behave like a standard Turing machine and can move in both directions across input, except cannot write to its input tape. The machine in its bare form is equivalent to a deterministic finite automaton in computational power, and therefore can only parse a regular language.
A symmetric Turing machine is a Turing machine which has a configuration graph that is undirected.
In computer science, more specifically in automata and formal language theory, nested words are a concept proposed by Alur and Madhusudan as a joint generalization of words, as traditionally used for modelling linearly ordered structures, and of ordered unranked trees, as traditionally used for modelling hierarchical structures. Finite-state acceptors for nested words, so-called nested word automata, then give a more expressive generalization of finite automata on words. The linear encodings of languages accepted by finite nested word automata gives the class of visibly pushdown languages. The latter language class lies properly between the regular languages and the deterministic context-free languages. Since their introduction in 2004, these concepts have triggered much research in that area.
In theoretical computer science, a Turing machine is a theoretical machine that is used in thought experiments to examine the abilities and limitations of computers. An unambiguous Turing machine is a special kind of non-deterministic Turing machine, which, in some sense, is similar to a deterministic Turing machine.
This article needs additional citations for verification .(January 2019) |