Package on a package

Last updated

Package on a package (PoP) is an integrated circuit packaging method to vertically combine discrete logic and memory ball grid array (BGA) packages. Two or more packages are installed atop each other, i.e. stacked, with a standard interface to route signals between them. This allows higher component density in devices, such as mobile phones, personal digital assistants (PDA), and digital cameras, at the cost of slightly higher height requirements. Stacks with more than 2 packages are uncommon, due to heat dissipation considerations.

Contents

Configuration

Two widely used configurations exist for PoP:

Typical logic plus memory PoP stack, common to mobile phone SoCs or baseband modems from 2005 onward ASIC + Memory PoP Schematic.JPG
Typical logic plus memory PoP stack, common to mobile phone SoCs or baseband modems from 2005 onward

During PCB assembly, the bottom package of a PoP stack is placed directly on the PCB, and the other package(s) of the stack are stacked on top. The packages of a PoP stack become attached to each other (and to the PCB) during reflow soldering.

Benefits

The package on a package technique tries to combine the benefits of traditional packaging with the benefits of die-stacking techniques, while avoiding their drawbacks.

Traditional packaging places each die in its own package, a package designed for normal PCB assembly techniques that place each package directly on the PCB side-by-side. The 3D die-stacking system in package (SiP) techniques stacks multiple die in a single package, which has several advantages and also some disadvantages compared to traditional PCB assembly.

In embedded PoP techniques, chips are embedded in a substrate on the bottom of the package. This PoP technology enables smaller packages with shorter electrical connections and is supported by companies such as Advanced Semiconductor Engineering (ASE). [1]

Advantages over traditional isolated-chip packaging

The most obvious benefit is motherboard space savings. PoP uses much less PCB area, almost as little as stacked-die packages.

Electrically, PoP offers benefits by minimizing track length between different interoperating parts, such as a controller and memory. This yields better electrical performance of devices, since shorter routing of interconnections between circuits yields faster signal propagation and reduced noise and cross-talk.

Advantages over chip stacking

There are several key differences between stacked-die and stacked-package products.

The main financial benefit of package on a package is that the memory device is decoupled from the logic device. Therefore this gives PoP all the same advantages that traditional packaging has over stacked-die products:

JEDEC standardization

Other names

Package on a package is also known by other names:

History

In 2001, a Toshiba research team including T. Imoto, M. Matsui and C. Takubo developed a "System Block Module" wafer bonding process for manufacturing 3D integrated circuit (3D IC) packages. [4] [5] The earliest known commercial use of a 3D package-on-package chip was in Sony's PlayStation Portable (PSP) handheld game console, released in 2004. The PSP hardware includes eDRAM (embedded DRAM) memory manufactured by Toshiba in a 3D package chip with two dies stacked vertically. [6] Toshiba called it "semi-embedded DRAM" at the time, before later calling it a stacked "chip-on-chip" (CoC) solution. [6] [7]

In April 2007, Toshiba commercialized an eight-layer 3D chip package, the 16  GB THGAM embedded NAND flash memory chip, which was manufactured with eight stacked 2 GB NAND flash chips. [8] The same month, U.S. Patent 7,923,830 ("Package-on-package secure module having anti-tamper mesh in the substrate of the upper package") was filed by Steven M. Pope and Ruben C. Zeta of Maxim Integrated. [9] In September 2007, Hynix Semiconductor introduced 24-layer 3D packaging technology, with a 16 GB flash memory chip that was manufactured with 24 stacked NAND flash chips using a wafer bonding process. [10]

Related Research Articles

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit, also known as a microchip or IC, is a small electronic device made up of multiple interconnected electronic components such as transistors, resistors, and capacitors. These components are etched onto a small piece of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality.

<span class="mw-page-title-main">Moore's law</span> Observation on the growth of integrated circuit capacity

Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production.

<span class="mw-page-title-main">Flash memory</span> Electronic non-volatile computer storage device

Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating gate MOSFETs. They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate.

<span class="mw-page-title-main">Ball grid array</span> Surface-mount packaging that uses an array of solder balls

A ball grid array (BGA) is a type of surface-mount packaging used for integrated circuits. BGA packages are used to permanently mount devices such as microprocessors. A BGA can provide more interconnection pins than can be put on a dual in-line or flat package. The whole bottom surface of the device can be used, instead of just the perimeter. The traces connecting the package's leads to the wires or balls which connect the die to package are also on average shorter than with a perimeter-only type, leading to better performance at high speeds.

<span class="mw-page-title-main">MultiMediaCard</span> Memory card format

The MultiMediaCard, officially abbreviated as MMC, is a memory card standard used for solid-state storage. Unveiled in 1997 by SanDisk and Siemens, MMC is based on a surface-contact low pin-count serial interface using a single memory stack substrate assembly, and is therefore much smaller than earlier systems based on high pin-count parallel interfaces using traditional surface-mount assembly such as CompactFlash. Both products were initially introduced using SanDisk NOR-based flash technology.

<span class="mw-page-title-main">Small outline integrated circuit</span> Surface mount variant of DIP

A small outline integrated circuit (SOIC) is a surface-mounted integrated circuit (IC) package which occupies an area about 30–50% less than an equivalent dual in-line package (DIP), with a typical thickness being 70% less. They are generally available in the same pin-outs as their counterpart DIP ICs. The convention for naming the package is SOIC or SO followed by the number of pins. For example, a 14-pin 4011 would be housed in an SOIC-14 or SO-14 package.

<span class="mw-page-title-main">Multi-chip module</span> Electronic assembly containing multiple integrated circuits that behaves as a unit

A multi-chip module (MCM) is generically an electronic assembly where multiple integrated circuits, semiconductor dies and/or other discrete components are integrated, usually onto a unifying substrate, so that in use it can be treated as if it were a larger IC. Other terms for MCM packaging include "heterogeneous integration" or "hybrid integrated circuit". The advantage of using MCM packaging is it allows a manufacturer to use multiple components for modularity and/or to improve yields over a conventional monolithic IC approach.

<span class="mw-page-title-main">System in a package</span> Electronic component

A system in a package (SiP) or system-in-package is a number of integrated circuits (ICs) enclosed in one chip carrier package or encompassing an IC package substrate that may include passive components and perform the functions of an entire system. The ICs may be stacked using package on package, placed side by side, and/or embedded in the substrate. The SiP performs all or most of the functions of an electronic system, and is typically used when designing components for mobile phones, digital music players, etc. Dies containing integrated circuits may be stacked vertically on a substrate. They are internally connected by fine wires that are bonded to the package. Alternatively, with a flip chip technology, solder bumps are used to join stacked chips together, or even both. SiPs are like systems on a chip (SoCs) but less tightly integrated and not on a single semiconductor die.

The transistor count is the number of transistors in an electronic device. It is the most common measure of integrated circuit complexity. The rate at which MOS transistor counts have increased generally follows Moore's law, which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a chip, transistor count does not represent how advanced the corresponding manufacturing technology is: a better indication of this is transistor density.

<span class="mw-page-title-main">Open NAND Flash Interface Working Group</span> Association of electronic companies

The Open NAND Flash Interface Working Group is a consortium of technology companies working to develop open standards for NAND flash memory and devices that communicate with them. The formation of ONFI was announced at the Intel Developer Forum in March 2006.

<span class="mw-page-title-main">Multi-level cell</span> Memory cell capable of storing more than a single bit of information

In electronics, a multi-level cell (MLC) is a memory cell capable of storing more than a single bit of information, compared to a single-level cell (SLC), which can store only one bit per memory cell. A memory cell typically consists of a single floating-gate MOSFET, thus multi-level cells reduce the number of MOSFETs required to store the same amount of data as single-level cells.

Universal Flash Storage (UFS) is a flash storage specification for digital cameras, mobile phones and consumer electronic devices. It was designed to bring higher data transfer speed and increased reliability to flash memory storage, while reducing market confusion and removing the need for different adapters for different types of cards. The standard encompasses both packages permanently attached (embedded) within a device (eUFS), and removable UFS memory cards.

<span class="mw-page-title-main">Through-silicon via</span> Metal-plated holes used to vertically and electrically connect several dies that are atop each other

In electronic engineering, a through-silicon via (TSV) or through-chip via is a vertical electrical connection (via) that passes completely through a silicon wafer or die. TSVs are high-performance interconnect techniques used as an alternative to wire-bond and flip chips to create 3D packages and 3D integrated circuits. Compared to alternatives such as package-on-package, the interconnect and device density is substantially higher, and the length of the connections becomes shorter.

A three-dimensional integrated circuit is a MOS integrated circuit (IC) manufactured by stacking as many as 16 or more ICs and interconnecting them vertically using, for instance, through-silicon vias (TSVs) or Cu-Cu connections, so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. The 3D IC is one of several 3D integration schemes that exploit the z-direction to achieve electrical performance benefits in microelectronics and nanoelectronics.

A semiconductor package is a metal, plastic, glass, or ceramic casing containing one or more discrete semiconductor devices or integrated circuits. Individual components are fabricated on semiconductor wafers before being diced into die, tested, and packaged. The package provides a means for connecting it to the external environment, such as printed circuit board, via leads such as lands, balls, or pins; and protection against threats such as mechanical impact, chemical contamination, and light exposure. Additionally, it helps dissipate heat produced by the device, with or without the aid of a heat spreader. There are thousands of package types in use. Some are defined by international, national, or industry standards, while others are particular to an individual manufacturer.

<span class="mw-page-title-main">Chip carrier</span> Surface mount technology package for integrated circuits

In electronics, a chip carrier is one of several kinds of surface-mount technology packages for integrated circuits. Connections are made on all four edges of a square package; compared to the internal cavity for mounting the integrated circuit, the package overall size is large.

<span class="mw-page-title-main">Memory cell (computing)</span> Part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

<span class="mw-page-title-main">High Bandwidth Memory</span> Type of memory used on processors that require high transfer rate memory

High Bandwidth Memory (HBM) is a computer memory interface for 3D-stacked synchronous dynamic random-access memory (SDRAM) initially from Samsung, AMD and SK Hynix. It is used in conjunction with high-performance graphics accelerators, network devices, high-performance datacenter AI ASICs, as on-package cache in CPUs and on-package RAM in upcoming CPUs, and FPGAs and in some supercomputers. The first HBM memory chip was produced by SK Hynix in 2013, and the first devices to use HBM were the AMD Fiji GPUs in 2015.

<span class="mw-page-title-main">MOSAID</span> Canadian semiconductor technology company

MOSAID is a semiconductor technology company incorporated in Ottawa, Canada. It was founded in 1975 as a DRAM design company, and later branched out into other areas including EDA software, semiconductor reverse engineering, test equipment manufacturing and intellectual property licensing. MOSAID went public in 1994 with a listing on the Toronto Stock Exchange under ticker symbol "MSD". By 2011 the business was based exclusively on patent licensing and the company was acquired by Sterling Partners, a US-based private equity firm. MOSAID was renamed Conversant Intellectual Property Management in 2013. In 2021, the company announced it was changing its name back to MOSAID.

References

  1. LaPedus, Mark (2014-06-19). "Mobile Packaging Market Heats Up". Semiconductor Engineering. Retrieved 2016-04-28.
  2. Thomas, Glen. "Package-on-Package Flux". Indium Corporation. Retrieved 2015-07-30.
  3. Amkor Technology. "Package on Package (PoP | PSfvBGA | PSfcCSP | TMV® PoP)" . Retrieved 2015-07-30.
  4. Garrou, Philip (6 August 2008). "Introduction to 3D Integration". Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits (PDF). Wiley-VCH. p. 4. doi:10.1002/9783527623051.ch1. ISBN   9783527623051.
  5. Imoto, T.; Matsui, M.; Takubo, C.; Akejima, S.; Kariya, T.; Nishikawa, T.; Enomoto, R. (2001). "Development of 3-Dimensional Module Package, "System Block Module"". Electronic Components and Technology Conference. Institute of Electrical and Electronics Engineers (51): 552–7.
  6. 1 2 James, Dick (2014). "3D ICs in the real world". 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014). pp. 113–119. doi:10.1109/ASMC.2014.6846988. ISBN   978-1-4799-3944-2. S2CID   42565898.
  7. "System-in-Package (SiP)". Toshiba . Archived from the original on 3 April 2010. Retrieved 3 April 2010.
  8. "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba . April 17, 2007. Archived from the original on November 23, 2010. Retrieved 23 November 2010.
  9. "United States Patent US 7,923,830 B2" (PDF). 2011-04-12. Retrieved 2015-07-30.
  10. "Hynix Surprises NAND Chip Industry". Korea Times . 5 September 2007. Retrieved 8 July 2019.

Further reading