Metal electrode leadless face

Last updated
MiniMelf diode Mini-MELF diode.jpg
MiniMelf diode

Metal electrode leadless face (MELF) is a type of leadless cylindrical electronic surface mount device package with metal end terminals. Diodes and resistors are the most common MELF devices. [1]

Contents

The EN 140401-803 and JEDEC DO-213 standards describe multiple MELF components. [2]


Diode packages list
TitleSODDOSizeRating
MELF (MMB)SOD-106DO-213ABL: 5.8 mm, ⌀: 2.2 mm 1.0 W500 V
MiniMELF (MMA)SOD-80DO-213AAL: 3.6 mm, ⌀: 1.4 mm 0.25 W200 V
MicroMELF (MMU)L: 2.2 mm, ⌀: 1.1 mm 0.2 W100 V


Handling difficulties

Zener diode for high-reliability applications in QuadroMELF package Zener diode (JAN 1N6316) in QuadroMELF package.jpg
Zener diode for high-reliability applications in QuadroMELF package

Because of their cylindrical shape and small size, these components can roll off the workbench or circuit board before they have been soldered into place. As such, there is a joke which suggests an alternate meaning for the acronym: Most End up Lying on the Floor. They are sometimes called a "roll away" package. [3]

During automated SMT pick-and-place, this happens mostly if the mechanical pressure of the SMD placer nozzle is too low. If the MELF components are placed into the solder paste with enough pressure, then this problem can be minimized. Care must be taken with glass diodes which are less mechanically robust than resistors and other MELF components.

Also, when building up PCBs via manual assembly using tweezers (e.g., for prototyping) then the pressure at the end of tweezers can often cause a MELF component to slip and shoot out the ends, thereby making their placement more difficult compared to flat component packages.

Another reason for the nickname of MELF components is that some production engineers do not like to use MELF nozzles on a SMT pick-and-place machine due to the time required to change from flat nozzles to MELF nozzles. For MICRO-MELF and MINI-MELF most SMD placers are able to use flat chip nozzles if the vacuum is high enough; i.e., higher than for flat chip components. For MELFs with the case size of 0207 or less, it is recommended to use the original MELF nozzle supplied with the SMT machine. Each supplier of such SMD pick-and-place machines offers these types of nozzles.

To overcome some of the difficulties encountered when mounting these devices, there are also variants with square electrodes (e.g. SQ MELF, QuadroMELF and B-MELF). These variants are mainly used in semiconductor diodes for applications where the high reliability of hermetically sealed voidless-glass packages is required. [4]

These handling difficulties prompted development of alternative SMT packages for common MELF components (like diodes) where the power handling capability needed to be similar to MELF components (superior to low-power 0805/0603, etc. SMT components) but with improved automated pick-and-place handling characteristics. [3] This resulted in various squared-off packages with fold-over contacts, similar to rectangular inductor/tantalum capacitor packages. [3] [5]

Technical advantages

Despite their handling difficulties, and in the particular case of MELF resistors, they are still widely used in high-reliability and precision applications where their predictable characteristics (e.g., low failure rate with well-defined failure modes) as well as their higher performance in terms of accuracy, long-term stability, moisture resistance, high-temperature operation far outweigh their disadvantages. [6]

Related Research Articles

<span class="mw-page-title-main">Resistor</span> Passive electrical component providing electrical resistance

A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.

<span class="mw-page-title-main">Dual in-line package</span> Type of electronic component package

In microelectronics, a dual in-line package is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins. The package may be through-hole mounted to a printed circuit board (PCB) or inserted in a socket. The dual-inline format was invented by Don Forbes, Rex Rice and Bryant Rogers at Fairchild R&D in 1964, when the restricted number of leads available on circular transistor-style packages became a limitation in the use of integrated circuits. Increasingly complex circuits required more signal and power supply leads ; eventually microprocessors and similar complex devices required more leads than could be put on a DIP package, leading to development of higher-density chip carriers. Furthermore, square and rectangular packages made it easier to route printed-circuit traces beneath the packages.

<span class="mw-page-title-main">Surface-mount technology</span> Method for producing electronic circuits

Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred to as a surface-mount device (SMD). In industry, this approach has largely replaced the through-hole technology construction method of fitting components, in large part because SMT allows for increased manufacturing automation which reduces cost and improves quality. It also allows for more components to fit on a given area of substrate. Both technologies can be used on the same board, with the through-hole technology often used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

<span class="mw-page-title-main">Desoldering</span> Removal of solder and components from a circuit board

In electronics, desoldering is the removal of solder and components from a circuit board for troubleshooting, repair, replacement, and salvage.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

<span class="mw-page-title-main">Pick-and-place machine</span> Robotic machine

Surface-mount technology (SMT) component placement systems, commonly called pick-and-place machines or P&Ps, are robotic machines which are used to place surface-mount devices (SMDs) onto a printed circuit board (PCB). They are used for high speed, high precision placing of a broad range of electronic components onto the PCBs which are in turn used in computers, consumer electronics, and industrial, medical, automotive, military and telecommunications equipment. Similar equipment exists for through-hole components. This type of equipment is sometimes used to package microchips using the flip chip method.

<span class="mw-page-title-main">Hybrid integrated circuit</span> Type of miniature electronic circuit

A hybrid integrated circuit (HIC), hybrid microcircuit, hybrid circuit or simply hybrid is a miniaturized electronic circuit constructed of individual devices, such as semiconductor devices and passive components, bonded to a substrate or printed circuit board (PCB). A PCB having components on a Printed wiring board (PWB) is not considered a true hybrid circuit according to the definition of MIL-PRF-38534.

<span class="mw-page-title-main">1N4148 signal diode</span> Standard silicon switching diode

The 1N4148 is a standard silicon switching signal diode. It is one of the most popular and long-lived switching diodes because of its dependable specifications and low cost. Its name follows the JEDEC nomenclature. The 1N4148 is useful in switching applications up to about 100 MHz with a reverse-recovery time of no more than 4 ns.

<span class="mw-page-title-main">Thermal copper pillar bump</span>

A thermal copper pillar bump, also known as a "thermal bump", is a thermoelectric device made from thin-film thermoelectric material embedded in flip chip interconnects for use in electronics and optoelectronic packaging, including: flip chip packaging of CPU and GPU integrated circuits (chips), laser diodes, and semiconductor optical amplifiers (SOA). Unlike conventional solder bumps that provide an electrical path and a mechanical connection to the package, thermal bumps act as solid-state heat pumps and add thermal management functionality locally on the surface of a chip or to another electrical component. The diameter of a thermal bump is 238 μm and 60 μm high.

<span class="mw-page-title-main">Vishay Intertechnology</span> American semiconductor manufacturer

Vishay Intertechnology, Inc. is an American manufacturer of discrete semiconductors and passive electronic components founded by Polish-born businessman Felix Zandman. Vishay has manufacturing plants in Israel, Asia, Europe, and the Americas where it produces rectifiers, diodes, MOSFETs, optoelectronics, selected integrated circuits, resistors, capacitors, and inductors. Vishay Intertechnology revenues for 2023 were $3.4 billion. At the end of 2023, Vishay had approximately 23,500 full-time employees.

<span class="mw-page-title-main">Soldering station</span> Multipurpose power soldering device

A soldering station is a multipurpose power soldering device designed for electronic components soldering. This type of equipment is mostly used in electronics and electrical engineering. Soldering station consists of one or more soldering tools connected to the main unit, which includes the controls, means of indication, and may be equipped with an electric transformer. Soldering stations may include some accessories – holders and stands, soldering tip cleaners, etc.

<span class="mw-page-title-main">Integrated passive devices</span>

Integrated passive devices (IPDs), also known as integrated passive components (IPCs) or embedded passive components (EPC), are electronic components where resistors (R), capacitors (C), inductors (L)/coils/chokes, microstriplines, impedance matching elements, baluns or any combinations of them are integrated in the same package or on the same substrate. Sometimes integrated passives can also be called as embedded passives, and still the difference between integrated and embedded passives is technically unclear. In both cases passives are realized in between dielectric layers or on the same substrate.

<span class="mw-page-title-main">Thick-film technology</span>

Thick-film technology is used to produce electronic devices/modules such as surface mount devices modules, hybrid integrated circuits, heating elements, integrated passive devices and sensors. The main manufacturing technique is screen printing (stenciling), which in addition to use in manufacturing electronic devices can also be used for various graphic reproduction targets. It became one of the key manufacturing/miniaturisation techniques of electronic devices/modules during 1950s. Typical film thickness – manufactured with thick film manufacturing processes for electronic devices – is 0.0001 to 0.1 mm.

A semiconductor package is a metal, plastic, glass, or ceramic casing containing one or more discrete semiconductor devices or integrated circuits. Individual components are fabricated on semiconductor wafers before being diced into die, tested, and packaged. The package provides a means for connecting it to the external environment, such as printed circuit board, via leads such as lands, balls, or pins; and protection against threats such as mechanical impact, chemical contamination, and light exposure. Additionally, it helps dissipate heat produced by the device, with or without the aid of a heat spreader. There are thousands of package types in use. Some are defined by international, national, or industry standards, while others are particular to an individual manufacturer.

<span class="mw-page-title-main">1N400x rectifier diode</span>

The 1N400x series is a family of popular one-ampere general-purpose silicon rectifier diodes commonly used in AC adapters for common household appliances. Its blocking voltage varies from 50 volts (1N4001) to 1000 volts (1N4007). This JEDEC device number series is available in the DO-41 axial package. Diodes with similar ratings are available in SMA and MELF surface mount packages.

<span class="mw-page-title-main">Failure of electronic components</span> Ways electronic components fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

<span class="mw-page-title-main">Chip carrier</span> Surface mount technology package for integrated circuits

In electronics, a chip carrier is one of several kinds of surface-mount technology packages for integrated circuits. Connections are made on all four edges of a square package; compared to the internal cavity for mounting the integrated circuit, the package overall size is large.

Component placement is an electronics manufacturing process that places electrical components precisely on printed circuit boards (PCBs) to create electrical interconnections between functional components and the interconnecting circuitry in the PCBs (leads-pads). The component leads must be accurately immersed in the solder paste previously deposited on the PCB pads. The next step after component placement is soldering.

References

  1. MELF Resistors, Vishay Intertechnology, 2010, retrieved 2013-12-21
  2. PDD Marking (PDF), Vishay General Semiconductor, 2009, p. 3, archived from the original (PDF) on 2012-06-11, retrieved 2013-12-21
  3. 1 2 3 Diotec Semiconductor, “Comparison Between MELF and SMA Package.” Diotec Semiconductor, 19-Jul-2010.
  4. 1N6309 Specifications, Microsemi Corporation, 2011, retrieved 2016-03-24
  5. Bourns® Integrated Passives & Actives Product Group Introduces New Chip Diode Product Line (CD Series), 29-Oct-2003. [Online]. Available: http://www.bourns.com/News.aspx?name=pr_102903. [Accessed: 14-May-2013].
  6. MELF Resistors - The world's most reliable and predictable, high-performing film resistors (PDF), Vishay Intertechnology, 2010, retrieved 2014-04-15