Electronic packaging

Last updated

Electronic packaging is the design and production of enclosures for electronic devices ranging from individual semiconductor devices up to complete systems such as a mainframe computer. Packaging of an electronic system must consider protection from mechanical damage, cooling, radio frequency noise emission and electrostatic discharge. Product safety standards may dictate particular features of a consumer product, for example, external case temperature or grounding of exposed metal parts. Prototypes and industrial equipment made in small quantities may use standardized commercially available enclosures such as card cages or prefabricated boxes. Mass-market consumer devices may have highly specialized packaging to increase consumer appeal. Electronic packaging is a major discipline within the field of mechanical engineering.

Mainframe computer computers used primarily by corporate and governmental organizations

Mainframe computers or mainframes are computers used primarily by large organizations for critical applications; bulk data processing, such as census, industry and consumer statistics, enterprise resource planning; and transaction processing. They are larger and have more processing power than some other classes of computers: minicomputers, servers, workstations, and personal computers.

Electromagnetic interference

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both man-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras. EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy.

Electrostatic discharge sudden flow of electricity between two electrically charged objects caused by contact, an electrical short, or dielectric breakdown

Electrostatic discharge (ESD) is the sudden flow of electricity between two electrically charged objects caused by contact, an electrical short, or dielectric breakdown. A buildup of static electricity can be caused by tribocharging or by electrostatic induction. The ESD occurs when differently-charged objects are brought close together or when the dielectric between them breaks down, often creating a visible spark.

Contents

Design

Electronic packaging can be organized by levels:

A semiconductor package is a metal, plastic, glass, or ceramic casing containing one or more discrete semiconductor devices or integrated circuits. Individual components are fabricated on semiconductor wafers before being diced into die, tested, and packaged. The package provides a means for connecting the package to the external environment, such as printed circuit board, via leads such as lands, balls, or pins; and protection against threats such as mechanical impact, chemical contamination, and light exposure. Additionally, it helps dissipate heat produced by the device, with or without the aid of a heat spreader. There are thousands of package types in use. Some are defined by international, national, or industry standards, while others are particular to an individual manufacturer.

The same electronic system may be packaged as a portable device or adapted for fixed mounting in an instrument rack or permanent installation. Packaging for aerospace, marine, or military systems imposes different types of design criteria.

Electronic packaging relies on mechanical engineering principles such as dynamics, stress analysis, heat transfer and fluid mechanics. High-reliability equipment often must survive drop tests, loose cargo vibration, secured cargo vibration, extreme temperatures, humidity, water immersion or spray, rain, sunlight (UV, IR and visible light), salt spray, explosive shock, and many more. These requirements extend beyond and interact with the electrical design.

An electronics assembly consists of component devices, circuit card assemblies (CCAs), connectors, cables and components such as transformers, power supplies, relays, switches, etc. that may not mount on the circuit card.

Many electrical products require the manufacturing of high-volume, low-cost parts such as enclosures or covers by techniques such as injection molding, die casting, investment casting, and so on. The design of these products depends on the production method and require careful consideration of dimensions and tolerances and tooling design. Some parts may be manufactured by specialized processes such as plaster- and sand-casting of metal enclosures.

In the design of electronic products, electronic packaging engineers perform analyses to estimate such things as maximum temperatures for components, structural resonant frequencies, and dynamic stresses and deflections under worst-case environments. Such knowledge is important to prevent immediate or premature electronic product failures.

Design considerations

A designer must balance many objectives and practical considerations when selecting packaging methods.

Packaging materials

Sheet metal

Punched and formed sheet metal is one of the oldest types of electronic packaging. It can be mechanically strong, provides electromagnetic shielding when the product requires that feature, and is easily made for prototypes and small production runs with little custom tooling expense.

Cast metal

Gasketed metal castings are sometimes used to package electronic equipment for exceptionally severe environments, such as in heavy industry, aboard ship, or deep under water. Aluminum die castings are more common than iron or steel sand castings.

Machined metal

Electronic packages are sometimes made by machining solid blocks of metal, usually aluminum, into complex shapes. They are fairly common in microwave assemblies for aerospace use, where precision transmission lines require complex metal shapes, in combination with hermetically sealed housings. Quantities tend to be small; sometimes only one unit of a custom design is required. Piece part costs are high, but there is little or no cost for custom tooling, and first-piece deliveries can take as little as half a day. The tool of choice is a numerically controlled vertical milling machine, with automatic translation of computer-aided design (CAD) files to toolpath command files.

A hermetic seal is any type of sealing that makes a given object airtight. The term originally applied to airtight glass containers, but as technology advanced it applied to a larger category of materials, including rubber and plastics. Hermetic seals are essential to the correct and safe functionality of many electronic and healthcare products. Used technically, it is stated in conjunction with a specific test method and conditions of use.

Molded plastic

Molded plastic cases and structural parts can be made by a variety of methods, offering tradeoffs in piece part cost, tooling cost, mechanical and electrical properties, and ease of assembly. Examples are injection molding, transfer molding, vacuum forming, and die cutting. Pl can be post-processed to provide conductive surfaces.

Potting

Formally called "encapsulation", potting consists of immersing the part or assembly in a liquid resin, then curing it. Potting can be done in a pre-molded potting shell, or directly in a mold. Today it is most widely used to protect semiconductor components from moisture and mechanical damage, and to serve as a mechanical structure holding the lead frame and the chip together. In earlier times it was often used to discourage reverse engineering of proprietary products built as printed circuit modules. It is also commonly used in high voltage products to allow live parts to be placed closer together, so that the product can be smaller. This also excludes dirt and conductive contaminants (such as impure water) from sensitive areas. Another use is to protect deep-submergence items such as sonar transducers from collapsing under extreme pressure, by filling all voids. Potting can be rigid or soft. When void-free potting is required, it is common practice to place the product in a vacuum chamber while the resin is still liquid, hold a vacuum for several minutes to draw the air out of internal cavities and the resin itself, then release the vacuum. Atmospheric pressure collapses the voids and forces the liquid resin into all internal spaces. Vacuum potting works best with resins that cure by polymerization, rather than solvent evaporation.

Porosity sealing or impregnation

Porosity Sealing or Resin Impregnation is similar to potting, but doesn't use a shell or a mold. Parts are submerged in a polymerizable monomer or solvent-based low viscosity plastic solution. The pressure above the fluid is lowered to a full vacuum. After the vacuum is released, the fluid flows into the part. When the part is withdrawn from the resin bath, it is drained and/or cleaned and then cured. Curing can consist of polymerizing the internal resin or evaporating the solvent, which leaves an insulating dielectric material between different voltage components. Porosity sealing (Resin Impregnation) fills all interior spaces, and may or may not leave a thin coating on the surface, depending on the wash/rinse performance. The main application of vacuum impregnation porosity sealing is in boosting the dielectric strength of transformers, solenoids, lamination stacks or coils, and some high voltage components. It prevents ionization from forming between closely spaced live surfaces and initiating failure.

Liquid filling

Liquid filling is sometimes used as an alternative to potting or impregnation. It's usually a dielectric fluid, chosen for chemical compatibility with the other materials present. This method is used mostly in very large electrical equipment such as utility transformers, to increase breakdown voltage. It can also be used to improve heat transfer, especially if allowed to circulate by natural convection or forced convection through a heat exchanger. Liquid filling can be removed for repair much more easily than potting.

Conformal coating

Conformal coating is a thin insulating coating applied by various methods. It provides mechanical and chemical protection of delicate components. It's widely used on mass-produced items such as axial-lead resistors, and sometimes on printed circuit boards. It can be very economical, but somewhat difficult to achieve consistent process quality. See Conformal coating, Parylene.

Conformal coating material is a thin polymeric film which conforms to the contours of a printed circuit board to protect the board's components. Typically applied at 25-250 μm(micrometers) thickness, it is applied to electronic circuitry to protect against moisture, dust, chemicals, and temperature extremes.

Parylene chemical compound

Parylene is the trade name for a variety of chemical vapor deposited poly(p-xylylene) polymers used as moisture and dielectric barriers. Among them, Parylene C is the most popular due to its combination of barrier properties, cost, and other processing advantages.

Glop-top

A chip-on-board (COB) covered with dark epoxy Famicom clone PCB.jpg
A chip-on-board (COB) covered with dark epoxy

Glop-top is a variant of conformal coating used in chip-on-board assembly (COB). It consists of a drop of specially formulated epoxy [3] or resin deposited over a semiconductor chip and its wire bonds, to provide mechanical support and exclude contaminants such as fingerprint residues which could disrupt circuit operation. It is most commonly used in electronic toys and low-end devices. [4]

Chip on board

Surface-mounted LEDs are frequently sold in chip-on-board (COB) configurations. In these, the individual diodes are mounted in an array that allows the device to produce a greater amount of luminous flux with greater ability to dissipate the resulting heat in an overall smaller package than can be accomplished by mounting LEDs, even surface mount types, individually on a circuit board. [5]

Hermetic metal/glass cases

Hermetic metal packaging began life in the vacuum tube industry, where a totally leak-proof housing was essential to operation. This industry developed the glass-seal electrical feedthrough, using alloys such as Kovar to match the coefficient of expansion of the sealing glass so as to minimize mechanical stress on the critical metal-glass bond as the tube warmed up. Some later tubes used metal cases and feedthroughs, and only the insulation around the individual feedthroughs used glass. Today, glass-seal packages are used mostly in critical components and assemblies for aerospace use, where leakage must be prevented even under extreme changes in temperature, pressure, and humidity.

Hermetic ceramic packages

Packages consisting of a lead frame embedded in a vitreous paste layer between flat ceramic top and bottom covers are more convenient than metal/glass packages for some products, but give equivalent performance. Examples are integrated circuit chips in ceramic Dual In-line Package form, or complex hybrid assemblies of chip components on a ceramic base plate. This type of packaging can also be divided into two main types: multilayer ceramic packages (like LTCC and HTCC) and pressed ceramic packages.

Printed circuit assemblies

Printed circuits are primarily a technology for connecting components together, but they also provide mechanical structure. In some products, such as computer accessory boards, they're all the structure there is. This makes them part of the universe of electronic packaging.

Electronic Packaging Small Form Factor Cases.png
Electronic Packaging

Reliability evaluation

A typical reliability qualification includes the following types of environmental stresses:

Hygrothermal test is performed in chambers with temperature and humidity. It is an environmental stress test used in evaluating product reliability. The typical hygrothermal test is 85˚C temperature and 85% relative humidity (abbr. 85˚C/85%RH). During the test, the sample is periodically taken out to test its mechanical or electrical properties. Some research works related to hygrothermal test can be seen in the references. [6]

See also

Related Research Articles

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter. The identification of the electron in 1897, along with the invention of the vacuum tube, which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age.

Integrated circuit electronic circuit manufactured by lithography; set of electronic circuits on one small flat piece (or "chip") of semiconductor material, normally silicon

An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon. The integration of large numbers of tiny transistors into a small chip results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete electronic components. The IC's mass production capability, reliability, and building-block approach to circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

Solder metal alloy used to join together metal pieces with higher melting points

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. The word solder comes from the Middle English word soudur, via Old French solduree and soulder, from the Latin solidare, meaning "to make solid". In fact, solder must first be melted in order to adhere to and connect the pieces together after cooling, which requires that an alloy suitable for use as solder have a lower melting point than the pieces being joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.

Printed circuit board board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.

Point-to-point construction Method for assembling electrical components

Point-to-point construction is a non-automated method of construction of electronics circuits widely used before the use of printed circuit boards (PCBs) and automated assembly gradually became widespread following their introduction in the 1950s. Circuits using thermionic valves were relatively large, relatively simple, and used large sockets, all of which made the PCB less obviously advantageous than with later complex semiconductor circuits. Point-to-point construction is still used to construct prototype equipment with few or heavy electronic components.

Surface-mount technology method for producing electronic circuits

Surface-mount technology (SMT) is a method for producing electronic circuits in which the components are mounted or placed directly onto the surface of printed circuit boards (PCBs). An electronic device so made is called a surface-mount device (SMD). In industry, it has largely replaced the through-hole technology construction method of fitting components with wire leads into holes in the circuit board. Both technologies can be used on the same board, with the through-hole technology used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

Thermosetting polymer polymer material that irreversibly cures

A thermosetting polymer, resin, or plastic, often called a thermoset, is a polymer that is irreversibly hardened by curing from a soft solid or viscous liquid prepolymer or resin. Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. It results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

Integrated circuit packaging Final stage of semiconductor device fabrication

In electronics manufacturing, integrated circuit packaging is the final stage of semiconductor device fabrication, in which the block of semiconductor material is encapsulated in a supporting case that prevents physical damage and corrosion. The case, known as a "package", supports the electrical contacts which connect the device to a circuit board.

Electronic component basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

TO-220

The TO-220 is a style of electronic package used for high-powered, through-hole components. The "TO" designation stands for "transistor outline". TO-220 packages have three leads. Similar packages with two, four, five or seven leads are also manufactured. A notable characteristic is a metal tab with a hole, used in mounting the case to a heatsink, allowing the component to dissipate more heat than one constructed in a TO-92 case. Common TO-220-packaged components include discrete semiconductors such as transistors and silicon-controlled rectifiers, as well as integrated circuits.

Potting (electronics)

In electronics, potting is a process of filling a complete electronic assembly with a solid or gelatinous compound for resistance to shock and vibration, and for exclusion of moisture and corrosive agents. Thermosetting plastics or silicone rubber gels are often used, though epoxy resins are also very common. Many sites recommend using a potting product to protect sensitive electronic components from impact, vibration, and loose wires.

Reliability of semiconductor devices can be summarized as follows:

  1. Semiconductor devices are very sensitive to impurities and particles. Therefore, to manufacture these devices it is necessary to manage many processes while accurately controlling the level of impurities and particles. The finished product quality depends upon the many layered relationship of each interacting substance in the semiconductor, including metallization, chip material and package.
  2. The problems of micro-processes, and thin films and must be fully understood as they apply to metallization and wire bonding. It is also necessary to analyze surface phenomena from the aspect of thin films.
  3. Due to the rapid advances in technology, many new devices are developed using new materials and processes, and design calendar time is limited due to non-recurring engineering constraints, plus time to market concerns. Consequently, it is not possible to base new designs on the reliability of existing devices.
  4. To achieve economy of scale, semiconductor products are manufactured in high volume. Furthermore, repair of finished semiconductor products is impractical. Therefore, incorporation of reliability at the design stage and reduction of variation in the production stage have become essential.
  5. Reliability of semiconductor devices may depend on assembly, use, and environmental conditions. Stress factors affecting device reliability include gas, dust, contamination, voltage, current density, temperature, humidity, mechanical stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical fields.
Failure of electronic components Ways electronic elements fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

Chip carrier one of several kinds of surface mount technology packages for integrated circuits

In electronics, a chip carrier is one of several kinds of surface-mount technology packages for integrated circuits. Connections are made on all four edges of a square package; Compared to the internal cavity for mounting the integrated circuit, the package overall size is large.

Co-fired ceramic

Co-fired ceramic devices are monolithic, ceramic microelectronic devices where the entire ceramic support structure and any conductive, resistive, and dielectric materials are fired in a kiln at the same time. Typical devices include capacitors, inductors, resistors, transformers, and hybrid circuits. The technology is also used for robust assembly and packaging of electronic components multi-layer packaging in the electronics industry, such as military electronics, MEMS, microprocessor and RF applications.

Digital image correlation analyses have applications in material property characterization, displacement measurement, and strain mapping. As such, DIC is becoming an increasingly popular tool when evaluating the thermo-mechanical behavior of electronic components and systems.

References

  1. Michael Pecht et al, Electronic Packaging Materials and Their Properties, CRC Press, 2017 ISBN   135183004X ,Preface
  2. Sudo, Toshio & Sasaki, Hideki & Masuda, Norio & Drewniak, James. (2004). Electromagnetic Interference (EMI) of System-on-Package (SOP). Advanced Packaging, IEEE Transactions on. 27. 304 - 314. 10.1109/TADVP.2004.828817.
  3. Venkat Nandivada. "Enhance Electronic Performance with Epoxy Compounds". Design World. 2013.
  4. Joe Kelly. "Improving Chip on Board Assembly". 2004.
  5. Handbook on the Physics and Chemistry of Rare Earths: Including Actinides. Elsevier Science. 1 August 2016. p. 89. ISBN   978-0-444-63705-5.
  6. G. Wu et al. "Study on the shear strength degradation of ACA joints induced by different hygrothermal aging conditions ". Microelectronics Reliability. 2013.