JEDEC

Last updated
JEDEC
Formation1958;66 years ago (1958) (1944)
TypeStandards organization
Legal statusActive
Headquarters Arlington County, Virginia, United States
Official language
English
Website www.jedec.org

The JEDEC Solid State Technology Association is an independent semiconductor engineering trade organization and standardization body headquartered in Arlington County, Virginia, United States.

Contents

JEDEC has over 300 members, including some of the world's largest computer companies. Its scope and past activities includes standardization of part numbers, defining an electrostatic discharge (ESD) standard, and leadership in the lead-free manufacturing transition. [1]

The origin of JEDEC traces back to 1944, when RMA (subsequently renamed EIA) and NEMA established the Joint Electron Tube Engineering Council (JETEC) to coordinate vacuum tube type numberings.

In 1958, with the advent of semiconductor technology, the joint JETEC-activity of EIA and NEMA was renamed into Joint Electron Device Engineering Council. [1] NEMA discontinued its involvement in 1979. In the fall of 1999, JEDEC became a separate trade association under the current name, but maintained an EIA alliance, until EIA ceased operations in 2011.

History

An early 1950s transistor using the precursor to the EIA/JEDEC part numbering system Sylvania 2N34 Transistor.jpg
An early 1950s transistor using the precursor to the EIA/JEDEC part numbering system

The origin of JEDEC can be traced back to 1944, when the Radio Manufacturers Association (RMA), and the National Electrical Manufacturers Association (NEMA) established the Joint Electron Tube Engineering Council (JETEC) to coordinate vacuum tube type numberings. The expansion of the radio industry caused JETEC to expand its scope to include solid-state devices and develop standards for semiconductor devices. Eventually, the joint JETEC activity of EIA and NEMA was renamed into Joint Electron Device Engineering Council (JEDEC) in 1958. [1] NEMA discontinued its involvement in 1979.

Earlier in the 20th century, the organization was known as JETEC, the Joint Electron Tube Engineering Council, and was responsible for assigning and coordinating RETMA tube designations to electron tubes (also called valves). The type 6L6, still to be found in electric-guitar amplifiers, typically has a type number that was assigned by JETEC.

In the fall of 1999, JEDEC became a separate trade association under the current name, but maintained an EIA alliance.

Standards policies

JEDEC has adopted the principle of open standards, which permit any and all interested companies to freely manufacture in compliance with adopted standards. This serves several vital functions for the advancement of electronic technologies. First and foremost, such standards allow for interoperability between different electrical components. JEDEC standards do not protect members from normal patent obligations. The designated representatives of JEDEC member companies are required to disclose patents and patent applications of which they are aware, assuming that this information is not considered proprietary. JEDEC patent policy requires that standards found to contain patented technology, whose owners do not sign a standard JEDEC patent letter, be withdrawn. Thus the penalty for a failure to disclose patents is retraction of the standard. Typically, standards are not adopted to cover technology that are subject to patent protection. In rare circumstances, standards covered by a patent may be adopted, but only on the understanding that the patent owner will not enforce such patent rights or, at a minimum, that the patent owner will provide a reasonable and non-discriminatory license to the patented technology. [2]

Part numbers

JEDEC's early work began as a part numbering system for devices which became popular in the 1960s. The first semiconductor devices, such as the 1N23 silicon point contact diode, were still designated in the old RMA tube designation system, where the "1" stood for "No filament/heater" and the "N" stood for "crystal rectifier". The first RMA digit thus was re-allocated from "heater power" to "p-n junction count" to form the new EIA/JEDEC EIA-370 standard; for example, the 1N4001 rectifier diode and 2N2222 transistor part numbers came from EIA-370. They are still popular today. In February 1982, JEDEC issued JESD370B, superseding the original EIA-370 and introducing a new letter symbol "C" that denotes the die version, as opposed to "N", now meaning the packaged version. The Japanese JIS semiconductor designation system employs a similar pattern. JEDEC later developed a numbering system for integrated circuits, but this did not gain acceptance in the semiconductor industry. The European Pro Electron semiconductor numbering system originated in a similar way from the older Mullard–Philips tube designation.

Test methods and product standards

This early work was followed by a number of test methods, JESD22, and product standards. For example, the ESD caution symbol, which is the hand with the line drawn through it, was published by JEDEC and is used worldwide. JEDEC also has a dictionary of semiconductor terms. All of JEDEC standards are free on the Web for downloading after a free registration.

JEDEC has issued widely used standards for device interfaces, such as the JEDEC memory standards for computer memory (RAM), including the DDR SDRAM standards.

Semiconductor package drawings

JEDEC also developed a number of popular package drawings for semiconductors such as TO-3, TO-5, etc. These are on the web under JEP-95. One hot issue is the development of lead-free packages that do not suffer from the tin whiskers problem that reappeared since the recent ban on lead content. JEDEC is working with iNEMI on a joint interest group on lead-free issues.

Members

As of 2023, JEDEC has 365 members in total. Among them are large companies, which include the following. [3]

Related Research Articles

<span class="mw-page-title-main">Diode</span> Two-terminal electronic component

A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction and high resistance in the other.

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

<span class="mw-page-title-main">Semiconductor device</span> Electronic component that exploits the electronic properties of semiconductor materials

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum or as free electrons and ions through an ionized gas.

<span class="mw-page-title-main">Electronic color code</span> Color code to indicate values of electronic components

An electronic color code or electronic colour code is used to indicate the values or ratings of electronic components, usually for resistors, but also for capacitors, inductors, diodes and others. A separate code, the 25-pair color code, is used to identify wires in some telecommunications cables. Different codes are used for wire leads on devices such as transformers or in building wiring.

<span class="mw-page-title-main">Electronic Industries Alliance</span> 1924–2011 American standards and trade organization

The Electronic Industries Alliance was an American standards and trade organization composed as an alliance of trade associations for electronics manufacturers in the United States. They developed standards to ensure the equipment of different manufacturers was compatible and interchangeable. The EIA ceased operations on February 11, 2011, but the former sectors continue to serve the constituencies of EIA.

Pro Electron or EECA is the European type designation and registration system for active components.

<span class="mw-page-title-main">TO-92</span> Small and cheap semiconductor package often used for transistors

The TO-92 is a widely used style of semiconductor package mainly used for transistors. The case is often made of epoxy or plastic, and offers compact size at a very low cost.

<span class="mw-page-title-main">TO-220</span> Power semiconductor through-hole package

The TO-220 is a style of electronic package used for high-powered, through-hole components with 0.1 inches (2.54 mm) pin spacing. The "TO" designation stands for "transistor outline". TO-220 packages have three leads. Similar packages with two, four, five or seven leads are also manufactured. A notable characteristic is a metal tab with a hole, used to mount the case to a heatsink, allowing the component to dissipate more heat than one constructed in a TO-92 case. Common TO-220-packaged components include discrete semiconductors such as transistors and silicon-controlled rectifiers, as well as integrated circuits.

<span class="mw-page-title-main">Humidity indicator card</span> Card on which a moisture-sensitive chemical is impregnated

A humidity indicator card (HIC) is a card on which a moisture-sensitive chemical is impregnated such that it will change color when the indicated relative humidity (RH) is exceeded. This has usually been a blotting paper impregnated with cobalt(II) chloride base; Less toxic alternatives include other chemicals such as cobalt-free chloride base and special plastic films.

<span class="mw-page-title-main">Electronic symbol</span> Pictogram used to represent various electrical and electronic devices or functions

An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering discipline, based on traditional conventions.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(deit) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(frnl), RCA (us), RFT(desv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

<span class="mw-page-title-main">TO-3</span> Metal can semiconductor package for power semiconductors

In electronics, TO-3 is a designation for a standardized metal semiconductor package used for power semiconductors, including transistors, silicon controlled rectifiers, and, integrated circuits. TO stands for "Transistor Outline" and relates to a series of technical drawings produced by JEDEC.

<span class="mw-page-title-main">1N4148 signal diode</span> Standard silicon switching diode

The 1N4148 is a standard silicon switching signal diode. It is one of the most popular and long-lived switching diodes because of its dependable specifications and low cost. Its name follows the JEDEC nomenclature. The 1N4148 is useful in switching applications up to about 100 MHz with a reverse-recovery time of no more than 4 ns.

The JEDEC memory standards are the specifications for semiconductor memory circuits and similar storage devices promulgated by the Joint Electron Device Engineering Council (JEDEC) Solid State Technology Association, a semiconductor trade and engineering standardization organization.

In the years 1942-1944, the Radio Manufacturers Association used a descriptive nomenclature system for industrial, transmitting, and special-purpose vacuum tubes. The numbering scheme was distinct from both the numbering schemes used for standard receiving tubes, and the existing transmitting tube numbering systems used previously, such as the "800 series" numbers originated by RCA and adopted by many others.

<span class="mw-page-title-main">1N400x rectifier diode</span>

The 1N400x series is a family of popular one-ampere general-purpose silicon rectifier diodes commonly used in AC adapters for common household appliances. Its blocking voltage varies from 50 volts (1N4001) to 1000 volts (1N4007). This JEDEC device number series is available in the DO-41 axial package. Diodes with similar ratings are available in SMA and MELF surface mount packages.

<span class="mw-page-title-main">TO-18</span>

In electronics, TO-18 is a designation for a style of transistor metal case. The case is more expensive than the similarly sized plastic TO-92 package. The name is from JEDEC, signifying Transistor Outline Package, Case Style 18.

<span class="mw-page-title-main">DO-204</span>

DO-204 is a family of diode semiconductor packages defined by JEDEC. This family comprises lead-mounted axial devices with round leads. Generally a diode will have a line painted near the cathode end.

Japanese Industrial Standards (JIS) has standard JIS-C-7012 for semiconductor part numbers. The first digit denotes the p-n junction count ; then follows the letter "S", then:

References

  1. 1 2 3 "JEDEC History". jedec.org. JEDEC. Retrieved 1 May 2017.
  2. "JEDEC Manual of Organization and Procedure JM21-L (§8.2)" (PDF). JEDEC Solid State Technology Association. July 2002. Archived from the original (PDF) on 2006-03-08.
  3. "Member List | JEDEC". jedec.org. Archived from the original on 2023-08-02. Retrieved 2023-10-08.