Abbreviation | ACPI |
---|---|
Status | Published |
First published | December 1996 |
Latest version | 6.5 August 2022 |
Organization |
|
Related standards | UEFI |
Predecessor | |
Domain | Power management firmware |
Website | uefi |
Advanced Configuration and Power Interface (ACPI) is an open standard that operating systems can use to discover and configure computer hardware components, to perform power management (e.g. putting unused hardware components to sleep), auto configuration (e.g. Plug and Play and hot swapping), and status monitoring. It was first released in December 1996. ACPI aims to replace Advanced Power Management (APM), the MultiProcessor Specification, and the Plug and Play BIOS (PnP) Specification. [1] ACPI brings power management under the control of the operating system, as opposed to the previous BIOS-centric system that relied on platform-specific firmware to determine power management and configuration policies. [2] The specification is central to the Operating System-directed configuration and Power Management (OSPM) system. ACPI defines hardware abstraction interfaces between the device's firmware (e.g. BIOS, UEFI), the computer hardware components, and the operating systems. [3] [4]
Internally, ACPI advertises the available components and their functions to the operating system kernel using instruction lists ("methods") provided through the system firmware (UEFI or BIOS), which the kernel parses. ACPI then executes the desired operations written in ACPI Machine Language (such as the initialization of hardware components) using an embedded minimal virtual machine.
Intel, Microsoft and Toshiba originally developed the standard, while HP, Huawei and Phoenix also participated later. In October 2013, ACPI Special Interest Group (ACPI SIG), the original developers of the ACPI standard, agreed to transfer all assets to the UEFI Forum, in which all future development will take place. [5] The latest version [update] of the standard 6.5 was released in August 2022. [6]
The firmware-level ACPI has three main components: the ACPI tables, the ACPI BIOS, and the ACPI registers. The ACPI BIOS generates ACPI tables and loads ACPI tables into main memory. Much of the firmware ACPI functionality is provided in bytecode of ACPI Machine Language (AML), a Turing-complete, domain-specific low-level language, stored in the ACPI tables. [7] To make use of the ACPI tables, the operating system must have an interpreter for the AML bytecode. A reference AML interpreter implementation is provided by the ACPI Component Architecture (ACPICA). At the BIOS development time, AML bytecode is compiled from the ASL (ACPI Source Language) code. [8] [9]
The ACPI Component Architecture (ACPICA), mainly written by Intel's engineers, provides an open-source platform-independent reference implementation of the operating system–related ACPI code. [10] The ACPICA code is used by Linux, Haiku, ArcaOS [11] and FreeBSD, [8] which supplement it with their operating-system specific code.
The first revision of the ACPI specification was released in December 1996, supporting 16, 24 and 32-bit addressing spaces. It was not until August 2000 that ACPI received 64-bit address support as well as support for multiprocessor workstations and servers with revision 2.0.
In 1999, then Microsoft CEO Bill Gates stated in an e-mail that Linux would benefit from ACPI without them having to do work and suggested to make it Windows-only. [12] [13] [14]
In September 2004, revision 3.0 was released, bringing to the ACPI specification support for SATA interfaces, PCI Express bus, multiprocessor support for more than 256 processors, ambient light sensors and user-presence devices, as well as extending the thermal model beyond the previous processor-centric support.
Released in June 2009, revision 4.0 of the ACPI specification added various new features to the design; most notable are the USB 3.0 support, logical processor idling support, and x2APIC support.
Initially ACPI is exclusive to x86 architecture; Revision 5.0 of the ACPI specification was released in December 2011, [15] which added the ARM architecture support. The revision 5.1 was released in July 2014. [16]
The latest specification revision is 6.5, which was released in August 2022. [6]
Microsoft's Windows 98 was the first operating system to implement ACPI, [17] [18] but its implementation was somewhat buggy or incomplete, [19] [20] although some of the problems associated with it were caused by the first-generation ACPI hardware. [21] Other operating systems, including later versions of Windows, macOS (x86 macOS only), eComStation, ArcaOS, [22] FreeBSD (since FreeBSD 5.0 [23] ), NetBSD (since NetBSD 1.6 [24] ), OpenBSD (since OpenBSD 3.8 [25] ), HP-UX, OpenVMS, Linux, GNU/Hurd and PC versions of Solaris, have at least some support for ACPI. [26] Some newer operating systems, like Windows Vista, require the computer to have an ACPI-compliant BIOS, and since Windows 8, the S0ix/Modern Standby state was implemented. [27]
Windows operating systems use acpi.sys [28] to access ACPI events.
The 2.4 series of the Linux kernel had only minimal support for ACPI, with better support implemented (and enabled by default) from kernel version 2.6.0 onwards. [29] Old ACPI BIOS implementations tend to be quite buggy, and consequently are not supported by later operating systems. For example, Windows 2000, Windows XP, and Windows Server 2003 only use ACPI if the BIOS date is after January 1, 1999. [30] Similarly, Linux kernel 2.6 may not use ACPI if the BIOS date is before January 1, 2001. [29]
Linux-based operating systems can provide handling of ACPI events via acpid. [31]
Once an OSPM-compatible operating system activates ACPI, it takes exclusive control of all aspects of power management and device configuration. The OSPM implementation must expose an ACPI-compatible environment to device drivers, which exposes certain system, device and processor states.
The ACPI Specification defines the following four global "Gx" states and six sleep "Sx" states for an ACPI-compliant computer system: [32] [33]
Gx | Name | Sx | Description |
---|---|---|---|
G0 | Working | S0 | The computer is running and the CPU executes instructions. "Away mode" is a subset of S0, where monitor is off but background tasks are running. |
G1 | Sleeping | S0ix | Modern Standby, [34] or "Low Power S0 Idle". Partial processor SoC sleep. [35] [36] Sub states include S0i1, S0i2 and S0i3. Known to ARM and x86 devices. |
S1 | Power on Suspend (POS): Processor caches are flushed and powered off, and the CPU(s) stops executing instructions. The power to the CPU(s) and RAM is maintained. Peripherals such as monitor and hard disk may be turned off. | ||
S2 | CPU powered off. Dirty cache is flushed to RAM. | ||
S3 | Commonly referred to as Standby, Sleep , or Suspend to RAM (STR): RAM remains powered, and RAM enters low power mode. Most peripherals are turned off. Fans are usually turned off. Requires GPU drivers on Windows. | ||
S4 | Hibernation or Suspend to Disk: All content of the main memory is saved to non-volatile memory such as a hard drive, and the system is powered down. | ||
G2 | Soft Off | S5 | Shutdown: system is powered down. |
G3 | Mechanical Off | The computer's power has been totally removed via a mechanical switch (as on the rear of a PSU). The power cord can be removed and the system is safe for disassembly (typically, only the real-time clock continues to run using its own small battery). |
The specification also defines a Legacy state: the state of an operating system which does not support ACPI. In this state, the hardware and power are not managed via ACPI, effectively disabling ACPI.
The device states D0–D3 are device dependent:
The CPU power states C0–C3 are defined as follows:
While a device or processor operates (D0 and C0, respectively), it can be in one of several power-performance states. These states are implementation-dependent. P0 is always the highest-performance state, with P1 to Pn being successively lower-performance states. The total number of states is device or processor dependent, but can be no greater than 16. [41]
P-states have become known as SpeedStep in Intel processors, as PowerNow! or Cool'n'Quiet in AMD processors, and as PowerSaver in VIA processors.
ACPI-compliant systems interact with hardware through either a "Function Fixed Hardware (FFH) Interface", or a platform-independent hardware programming model which relies on platform-specific ACPI Machine Language (AML) provided by the original equipment manufacturer (OEM).
Function Fixed Hardware interfaces are platform-specific features, provided by platform manufacturers for the purposes of performance and failure recovery. Standard Intel-based PCs have a fixed function interface defined by Intel, [43] which provides a set of core functionality that reduces an ACPI-compliant system's need for full driver stacks for providing basic functionality during boot time or in the case of major system failure.
ACPI Platform Error Interface (APEI) is a specification for reporting of hardware errors, e.g. chipset, RAM to the operating system.
ACPI defines many tables that provide the interface between an ACPI-compliant operating system and system firmware (BIOS or UEFI). This includes RSDP, RSDT, XSDT, FADT, FACS, DSDT, SSDT, MADT, and MCFG, for example. [44] [45]
The tables allow description of system hardware in a platform-independent manner, and are presented as either fixed-formatted data structures or in AML. The main AML table is the DSDT (differentiated system description table). The AML can be decompiled by tools like Intel's iASL (open-source, part of ACPICA) for purposes like patching the tables for expanding OS compatibility. [46] [47]
The Root System Description Pointer (RSDP) is located in a platform-dependent manner, and describes the rest of the tables.
A custom ACPI table called the Windows Platform Binary Table (WPBT) is used by Microsoft to allow vendors to add software into the Windows OS automatically. Some vendors, such as Lenovo, have been caught using this feature to install harmful software such as Superfish. [48] Samsung shipped PCs with Windows Update disabled. [48] Windows versions older than Windows 7 do not support this feature, but alternative techniques can be used. This behavior has been compared to rootkits. [49] [50]
In November 2003, Linus Torvalds—author of the Linux kernel—described ACPI as "a complete design disaster in every way". [51] [52]
Advanced power management (APM) is a technical standard for power management developed by Intel and Microsoft and released in 1992 which enables an operating system running an IBM-compatible personal computer to work with the BIOS to achieve power management.
In computing, BIOS is firmware used to provide runtime services for operating systems and programs and to perform hardware initialization during the booting process. The firmware comes pre-installed on the computer's motherboard.
Wake-on-LAN is an Ethernet or Token Ring computer networking standard that allows a computer to be turned on or awakened from sleep mode by a network message. It is based upon AMD's Magic Packet Technology, which was co-developed by AMD and Hewlett-Packard, following its proposal as a standard in 1995. The standard saw quick adoption thereafter through IBM, Intel and others.
Hardware abstractions are sets of routines in software that provide programs with access to hardware resources through programming interfaces. The programming interface allows all devices in a particular class C of hardware devices to be accessed through identical interfaces even though C may contain different subclasses of devices that each provide a different hardware interface.
Unified Extensible Firmware Interface is a specification for the firmware architecture of a computing platform. When a computer is powered on, the UEFI-implementation is typically the first that runs, before starting the operating system. Examples include AMI Aptio, Phoenix SecureCore, TianoCore EDK II, InsydeH2O.
American Megatrends International, LLC, doing business as AMI, is an international hardware and software company, specializing in PC hardware and firmware. The company was founded in 1985 by Pat Sarma and Subramonian Shankar. It is headquartered in Building 800 at 3095 Satellite Boulevard in unincorporated Gwinnett County, Georgia, United States, near the city of Duluth, and in the Atlanta metropolitan area.
QEMU is a free and open-source emulator that uses dynamic binary translation to emulate the processor of a computer. It provides a variety of hardware and device models for the machine, enabling it to run different guest operating systems. QEMU can be used in conjunction with Kernel-based Virtual Machine (KVM) to execute virtual machines at near-native speeds. Additionally, QEMU supports the emulation of user-level processes, allowing applications compiled for one processor architecture to run on another.
In computing, the System Management BIOS (SMBIOS) specification defines data structures that can be used to read management information produced by the BIOS of a computer. This eliminates the need for the operating system to probe hardware directly to discover what devices are present in the computer. The SMBIOS specification is produced by the Distributed Management Task Force (DMTF), a non-profit standards development organization. The DMTF estimates that two billion client and server systems implement SMBIOS.
UEFI Forum, Inc. is an alliance between technology companies to coordinate the development of the UEFI specifications. The board of directors includes representatives from twelve promoter companies: AMD, American Megatrends, ARM, Apple, Dell, Hewlett Packard Enterprise, HP Inc., Insyde Software, Intel, Lenovo, Microsoft, and Phoenix Technologies.
The High Precision Event Timer (HPET) is a hardware timer available in modern x86-compatible personal computers. Compared to older types of timers available in the x86 architecture, HPET allows more efficient processing of highly timing-sensitive applications, such as multimedia playback and OS task switching. It was developed jointly by Intel and Microsoft and has been incorporated in PC chipsets since 2005. Formerly referred to by Intel as a Multimedia Timer, the term HPET was selected to avoid confusion with the software multimedia timers introduced in the MultiMedia Extensions to Windows 3.0.
The GUID Partition Table (GPT) is a standard for the layout of partition tables of a physical computer storage device, such as a hard disk drive or solid-state drive, using universally unique identifiers (UUIDs), which are also known as globally unique identifiers (GUIDs). Forming a part of the Unified Extensible Firmware Interface (UEFI) standard, it is nevertheless also used for some BIOSs, because of the limitations of master boot record (MBR) partition tables, which use 32 bits for logical block addressing (LBA) of traditional 512-byte disk sectors.
System Management Mode is an operating mode of x86 central processor units (CPUs) in which all normal execution, including the operating system, is suspended. An alternate software system which usually resides in the computer's firmware, or a hardware-assisted debugger, is then executed with high privileges.
The Apple–Intel architecture, or Mactel, is an unofficial name used for Macintosh personal computers developed and manufactured by Apple Inc. that use Intel x86 processors, rather than the PowerPC and Motorola 68000 ("68k") series processors used in their predecessors or the ARM-based Apple silicon SoCs used in their successors. As Apple changed the architecture of its products, they changed the firmware from the Open Firmware used on PowerPC-based Macs to the Intel-designed Extensible Firmware Interface (EFI). With the change in processor architecture to x86, Macs gained the ability to boot into x86-native operating systems, while Intel VT-x brought near-native virtualization with macOS as the host OS.
The EFIsystem partition or ESP is a partition on a data storage device that is used by computers that have the Unified Extensible Firmware Interface (UEFI). When a computer is booted, UEFI firmware loads files stored on the ESP to start operating systems and various utilities.
The term Legacy Plug and Play, also shortened to Legacy PnP, describes a series of specifications and Microsoft Windows features geared towards operating system configuration of devices, and some device IDs are assigned by UEFI Forum. The standards were primarily aimed at the IBM PC standard bus, later dubbed Industry Standard Architecture (ISA). Related specifications are also defined for the common external or specialist buses commonly attached via ISA at the time of development, including RS-232 and parallel port devices.
The MultiProcessor Specification (MPS) for the x86 architecture is an open standard describing enhancements to both operating systems and firmware, which will allow them to work with x86-compatible processors in a multi-processor configuration. MPS covers Advanced Programmable Interrupt Controller (APIC) architectures.
Dynamic frequency scaling is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems.
SeaBIOS is an open-source implementation of an x86 BIOS, serving as a freely available firmware for x86 systems. Aiming for compatibility, it supports standard BIOS features and calling interfaces that are implemented by a typical proprietary x86 BIOS. SeaBIOS can either run on bare hardware as a coreboot payload, or can be used directly in emulators such as QEMU and Bochs.
NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCIS) is an open, logical-device interface specification for accessing a computer's non-volatile storage media usually attached via the PCI Express bus. The initial NVM stands for non-volatile memory, which is often NAND flash memory that comes in several physical form factors, including solid-state drives (SSDs), PCIe add-in cards, and M.2 cards, the successor to mSATA cards. NVM Express, as a logical-device interface, has been designed to capitalize on the low latency and internal parallelism of solid-state storage devices.
InstantGo, also known as InstantOn or Modern Standby, is a Microsoft specification for Windows 8 hardware and software that aims to bring smartphone-type power management capabilities to the PC platform, as well as increasing physical security.