Simple Firmware Interface

Last updated
SFI Common Table Format
OffsetLengthField
04Signature
44Length
81Revision
91Checksum
106OEM ID
168OEM Table ID
24var.Table Payload

Simple Firmware Interface (SFI) is developed by Intel Corporation as a lightweight method for firmware to export static tables to the operating system. It is supported by Intel's hand-held Moorestown platform.

SFI tables are data structures in memory, and all SFI tables share a common table header format. The operating system finds the system table by searching 16 byte boundaries between physical address 0x000E0000 and 0x000FFFFF. SFI has CPU, APIC, Memory Map, Idle, Frequency, M-Timer, M-RTC, OEMx, Wake Vector, I²C Device, and a SPI Device table.

SFI provides access to a standard ACPI XSDT (Extended System Description Table). XSDT is used by SFI to prevent namespace collision between SPI and ACPI. It can access standard ACPI tables such as PCI Memory Configuration Table (MCFG).

SFI support was merged into Linux kernel 2.6.32-rc1; [1] the core SFI patch is about 1,000 lines of code. Linux is the first operating system with an SFI implementation. Linux kernel 5.6 marked SFI as obsolete. [2]

SFI support was removed in Linux kernel 5.12. [3]

Related Research Articles

<span class="mw-page-title-main">BIOS</span> Firmware for hardware initialization and OS runtime services

In computing, BIOS is firmware used to provide runtime services for operating systems and programs and to perform hardware initialization during the booting process. The BIOS firmware comes pre-installed on an IBM PC or IBM PC compatible's system board and exists in some UEFI-based systems too as a compatibly support module to maintain compatibility operating systems that do not support UEFI native operation. The name originates from the Basic Input/Output System used in the CP/M operating system in 1975. The BIOS originally proprietary to the IBM PC has been reverse engineered by some companies looking to create compatible systems. The interface of that original system serves as a de facto standard.

The Linux kernel mailing list (LKML) is the main electronic mailing list for Linux kernel development, where the majority of the announcements, discussions, debates, and flame wars over the kernel take place. Many other mailing lists exist to discuss the different subsystems and ports of the Linux kernel, but LKML is the principal communication channel among Linux kernel developers. It is a very high-volume list, usually receiving about 1,000 messages each day, most of which are kernel code patches.

<span class="mw-page-title-main">UEFI</span> Operating system software specification

The Unified Extensible Firmware Interface (UEFI) is a publicly available specification that defines a software interface between an operating system and platform firmware. UEFI replaces the legacy Basic Input/Output System (BIOS) boot firmware originally present in all IBM PC-compatible personal computers, with most UEFI firmware implementations providing support for legacy BIOS services. UEFI can support remote diagnostics and repair of computers, even with no operating system installed.

<span class="mw-page-title-main">QEMU</span> Free virtualization and emulation software

QEMU is a free and open-source emulator. It emulates the machine's processor through dynamic binary translation and provides a set of different hardware and device models for the machine, enabling it to run a variety of guest operating systems. It can interoperate with Kernel-based Virtual Machine (KVM) to run virtual machines at near-native speed. QEMU can also do emulation for user-level processes, allowing applications compiled for one architecture to run on another.

The Direct Rendering Manager (DRM) is a subsystem of the Linux kernel responsible for interfacing with GPUs of modern video cards. DRM exposes an API that user-space programs can use to send commands and data to the GPU and perform operations such as configuring the mode setting of the display. DRM was first developed as the kernel-space component of the X Server Direct Rendering Infrastructure, but since then it has been used by other graphic stack alternatives such as Wayland.

<span class="mw-page-title-main">Mesa (computer graphics)</span> Free and open-source library for 3D graphics rendering

Mesa, also called Mesa3D and The Mesa 3D Graphics Library, is an open source implementation of OpenGL, Vulkan, and other graphics API specifications. Mesa translates these specifications to vendor-specific graphics hardware drivers.

coreboot Open-source computer firmware

coreboot, formerly known as LinuxBIOS, is a software project aimed at replacing proprietary firmware found in most computers with a lightweight firmware designed to perform only the minimum number of tasks necessary to load and run a modern 32-bit or 64-bit operating system.

<span class="mw-page-title-main">Linux kernel interfaces</span> An overview and comparison of the Linux kernal APIs and ABIs.

The Linux kernel provides several interfaces to user-space applications that are used for different purposes and that have different properties by design. There are two types of application programming interface (API) in the Linux kernel that are not to be confused: the "kernel–user space" API and the "kernel internal" API.

<span class="mw-page-title-main">Free and open-source graphics device driver</span> Software that controls computer-graphics hardware

A free and open-source graphics device driver is a software stack which controls computer-graphics hardware and supports graphics-rendering application programming interfaces (APIs) and is released under a free and open-source software license. Graphics device drivers are written for specific hardware to work within a specific operating system kernel and to support a range of APIs used by applications to access the graphics hardware. They may also control output to the display if the display driver is part of the graphics hardware. Most free and open-source graphics device drivers are developed by the Mesa project. The driver is made up of a compiler, a rendering API, and software which manages access to the graphics hardware.

<span class="mw-page-title-main">ACPI</span> Computer firmware interface standard

Advanced Configuration and Power Interface (ACPI) is an open standard that operating systems can use to discover and configure computer hardware components, to perform power management, auto configuration, and status monitoring. First released in December 1996, ACPI aims to replace Advanced Power Management (APM), the MultiProcessor Specification, and the Plug and Play BIOS (PnP) Specification. ACPI brings power management under the control of the operating system, as opposed to the previous BIOS-centric system that relied on platform-specific firmware to determine power management and configuration policies. The specification is central to the Operating System-directed configuration and Power Management (OSPM) system. ACPI defines hardware abstraction interfaces between the device's firmware, the computer hardware components, and the operating systems.

The High Precision Event Timer (HPET) is a hardware timer available in modern x86-compatible personal computers. Compared to older types of timers available in the x86 architecture, HPET allows more efficient processing of highly timing-sensitive applications, such as multimedia playback and OS task switching. It was developed jointly by Intel and Microsoft and has been incorporated in PC chipsets since 2005. Formerly referred to by Intel as a Multimedia Timer, the term HPET was selected to avoid confusion with the software multimedia timers introduced in the MultiMedia Extensions to Windows 3.0.

<span class="mw-page-title-main">Comparison of open-source wireless drivers</span> Wikimedia list article

Wireless network cards for computers require control software to make them function. This is a list of the status of some open-source drivers for 802.11 wireless network cards.

<span class="mw-page-title-main">EFI system partition</span> Partition used by Unified Extensible Firmware Interface

The EFIsystem partition or ESP is a partition on a data storage device that is used by computers having the Unified Extensible Firmware Interface (UEFI). When a computer is booted, UEFI firmware loads files stored on the ESP to start installed operating systems and various utilities.

In the context of free and open-source software, proprietary software only available as a binary executable is referred to as a blob or binary blob. The term usually refers to a device driver module loaded into the kernel of an open-source operating system, and is sometimes also applied to code running outside the kernel, such as system firmware images, microcode updates, or userland programs. The term blob was first used in database management systems to describe a collection of binary data stored as a single entity.

The MultiProcessor Specification (MPS) for the x86 architecture is an open standard describing enhancements to both operating systems and firmware, which will allow them to work with x86-compatible processors in a multi-processor configuration. MPS covers Advanced Programmable Interrupt Controller (APIC) architectures.

Moorestown is the Intel Corporation's handheld MID and smartphone platform based on Lincroft system-on-a-chip with an Atom processor core, Langwell input/output Platform Controller Hub, and a Briertown Power Management IC. Announced in 2010, the platform was demonstrated running Moblin Linux.

<span class="mw-page-title-main">Linux kernel</span> Operating system kernel

The Linux kernel is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel. It was originally authored in 1991 by Linus Torvalds for his i386-based PC, and it was soon adopted as the kernel for the GNU operating system, which was written to be a free (libre) replacement for Unix.

In computing, a devicetree is a data structure describing the hardware components of a particular computer so that the operating system's kernel can use and manage those components, including the CPU or CPUs, the memory, the buses and the integrated peripherals.

An open-channel solid state drive is a solid-state drive which does not have a firmware Flash Translation Layer implemented on the device, but instead leaves the management of the physical solid-state storage to the computer's operating system. The Linux 4.4 kernel is an example of an operating system kernel that supports open-channel SSDs which follow the NVM Express specification. The interface used by the operating system to access open-channel solid state drives is called LightNVM.

fwupd is an open-source daemon for managing the installation of firmware updates on Linux-based systems, developed by GNOME maintainer Richard Hughes. It is designed primarily for servicing the Unified Extensible Firmware Interface (UEFI) firmware on supported devices via EFI System Resource Table (ESRT) and UEFI Capsule, which is supported in Linux kernel 4.2 and later. Previously, the initiation of UEFI firmware updates within an operating system could, on most systems, only be performed using Microsoft Windows or DOS-specific software. ESRT allows the firmware to expose updatable components to the operating system, which can pass a UEFI capsule with updated firmware for processing and installation on the next boot. Updates can be exposed via a command line tool, or within graphical package managers via a D-Bus interface.

References

  1. "Upstream Linux Kernel Support". June 2009.
  2. "The Linux Kernel Obsoletes The Intel Simple Firmware Interface - Phoronix". www.phoronix.com. Retrieved 2020-09-16.
  3. Wysocki, Rafael. "Linux-Kernel Archive: [GIT PULL] Simple Firmware Interface (SFI) support removal for v5.12-rc1". lkml.iu.edu. LKML. Retrieved 26 February 2021.