General information | |
---|---|
Launched | From 2013 |
Common manufacturer |
|
Architecture and classification | |
Technology node | 22 nm |
Instructions | x86-16, IA-32, x86-64 |
Extensions | |
Physical specifications | |
Cores |
|
Products, models, variants | |
Brand names | |
History | |
Predecessors | Bonnell Saltwell |
Successors | Airmont (die shrink), Goldmont (new microarchitecture) |
Silvermont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. Silvermont forms the basis for a total of four SoC families: [1]
Silvermont is the successor of the Bonnell, using a newer 22 nm process (previously introduced with Ivy Bridge) and a new microarchitecture, replacing Hyper Threading with out-of-order execution. [2]
Silvermont was announced to news media on May 6, 2013, at Intel's headquarters at Santa Clara, California. [3] Intel had repeatedly said the first Bay Trail devices would be available during the Holiday 2013 timeframe, while leaked slides showed that the release window for Bay Trail-T as August 28 – September 13, 2013. [4] Both Avoton and Rangeley were announced as being available in the second half of 2013. The first Merrifield devices were announced in 1H14. [5]
According to the Tick–tock model Airmont is the 14 nm die shrink of Silvermont, launched in early 2015 and first seen in the Atom x7-Z8700 as used in the Microsoft Surface 3. [6] Airmont microarchitecture includes the following SoC families: [7]
Silvermont based cores have also been used, modified, in the Knight's Landing iteration of Intel's Xeon Phi HPC chips.
Silvermont was the first Atom processor to feature an out-of-order architecture. [8]
Intel revealed in its Q4 2016 quarterly report that there were quality issues in the C2000 product family, which had an effect on the financial performance of the company's Data Center Group that quarter. [12] An erratum named AVR54 published by Intel; state there is a defect in the chip's LPC clock, and affected systems "may experience inability to boot or may cease operation". [13] [14] [15] A workaround is available requiring platform hardware changes. The SoC failures are thought to have led to failures in Cisco and Synology products, [16] though discussion of the C2000 as the root cause of failure has been reported to be under a non-disclosure agreement for many vendors. [17]
Intel released a new C0 stepping of the C2000 series in April 2017 which corrected the bug. [18]
In July 2017 Intel published that a similar quality issue affects also Atom E3800 series embedded processors. The erratum named VLI89 published by Intel state, similar to issue with Atom C2000, that there is a defect in the chip's LPC clock and affected systems "may experience inability to boot or may cease operation". [19] Issues extend also to USB bus and SD card circuitry and should happen "under certain conditions where activity is high for several years". In April 2018 Intel announced it is releasing a new D1 stepping to fix the issue. [20]
The LPC, USB and SD Card buses circuitry degradation issues also apply to other Bay Trail processors such as Intel Celeron J1900 and N2800/N2900 series; [21] also to Pentium N3500, J2850, J2900 series; and Celeron J1800 and J1750 series—as those are based on the same affected silicon.
Cisco stated failures of Atom C2000 processors can occur as early as 18 months of use with higher failure rates occurring after 36 months. [22]
Mitigations were found to limit impact on systems. Firmware update for the LPC bus called LPC_CLKRUN# reduces the utilization of the LPC interface what in turn decreases (but not eliminates) LPC bus degradation - some systems are however not compatible with this new firmware. USB should have a maximum of 10% active time and there is a 50TB transmit traffic life expectancy over the lifetime of the port. It is recommended not to use SD card as a boot device and to remove the card from the system when not in use.
It has been widely reported that Bay Trail CPUs (and possibly their derivatives including Airmont/Braswell/Cherry Trail) experience random freezes / lock-ups on various Linux kernels. Reference Linux bug report 109051 on Kernel.org Bugzilla, first reported Dec-2015. Workaround seems to be setting the Linux kernel flag intel_idle.max_cstate=1
, which while eliminating the system freezes/lock-ups, results in increased CPU power/battery usage by preventing the CPU from entering higher power-saving C-states. Systems running Windows-OSes apparently do not experience these lockup/freeze issues. The issue had been addressed in the commit "drm/i915: Disable preemption and sleeping while using the punit sideband".
A potential fix is to set hw.acpi.cpu.cx_lowest=C1
and dev.cpu.<n>.lowest
via /etc/sysctl.conf
.
14 nm Airmont architecture processors are also affected by the design flaws as noted in the Braswell Specification Update under CHP49 errata. [23] In addition to LPC and SD Card circuitry degradation issues those 14 nm designs also have issues with Real Time Clock (RTC) circuitry degradation, their USB buses are however not affected. Unspecified firmware changes are required to mitigate RTC circuitry degradation. Intel does not plan to release a new stepping for Braswell. Intel admitted the issue stating the impact on consumers depends on use condition. [24]
List of desktop processors as follows:
Target segment | Cores (threads) | Processor branding and model | GPU model | TDP | Turbo (GHz) | GPU freq. (MHz) | L2 cache (MB) | Release date | Price (USD) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1-core | Base | Turbo | |||||||||
Value | 4 (4) | Pentium | J2900 | HD Graphics (4 EU) | 10 W / 2.41 GHz | 2.67 | 688 | 896 | 2 | Q4 2013 | $94 |
J2850 | — | 792 | Q3 2013 | ||||||||
Celeron | J1900 | 10 W / 2.0 GHz | 2.42 | 854 | Q4 2013 | $82 | |||||
J1850 | — | 792 | Q3 2013 | ||||||||
2 (2) | J1800 | 10 W / 2.41 GHz | 2.58 | 1 | Q4 2013 | $72 | |||||
J1750 | — | 750 | Q3 2013 |
It has been found that a bug in the blueprint of the C2000 CPUs family may cause failure of its embedded Ethernet ports.[ citation needed ]
List of server processors as follows: [25]
Target segment | Cores (threads) | Processor branding and model | GPU model | TDP | CPU Turbo (GHz) | Graphics clock rate | L2 cache (MB) | Release date | Price (USD) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1-core | Normal | Turbo | |||||||||
Server | 8 (8) | Atom | C2750 | — | 20 W / 2.4 GHz | 2.6 | — | — | 4 | Q3 2013 | $171 |
C2730 | 12 W / 1.7 GHz | 2.0 | $150 | ||||||||
4 (4) | C2550 | 14 W / 2.4 GHz | 2.6 | 2 | $86 | ||||||
C2530 | 9 W / 1.7 GHz | 2.0 | $70 | ||||||||
2 (2) | C2350 | 6 W / 1.7 GHz | 1 | $43 |
List of communications processors as follows: [26]
Target segment | Cores (threads) | Processor branding and model | GPU model | TDP | CPU Turbo (GHz) | GPU freq. | Intel QuickAssist | L2 cache (MB) | Release date | Price (USD) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1-core | Normal | Turbo | ||||||||||
Communications | 8 (8) | Atom | C2758 | — | 20 W / 2.4 GHz | — | — | — | Yes | 4 | Q3 2013 | $208 |
C2738 | No | |||||||||||
C2718 | 18 W / 2.0 GHz | Yes | $182 | |||||||||
4 (4) | C2558 | 15 W / 2.4 GHz | 2 | $104 | ||||||||
C2538 | No | |||||||||||
C2518 | 13 W / 1.7 GHz | Yes | $91 | |||||||||
C2508 | 9.5 W / 1.25 GHz | Q2 2014 | $98 | |||||||||
2 (2) | C2358 | 7 W / 1.7 GHz | 2.0 | 1 | Q3 2013 | $60 | ||||||
C2338 | No | |||||||||||
C2308 | 6 W / 1.25 GHz | — | Yes | Q2 2014 |
List of embedded processors as follows: [27]
Target segment | Cores (threads) | Processor branding and model | GPU model | TDP | CPU Turbo | GPU freq. (MHz) | L2 cache | Release date | Price (USD) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1-core | Base | Turbo | |||||||||
Embedded | 4 (4) | Atom | E3845 | HD Graphics (4 EU) | 10 W / 1.91 GHz | — | 542 | 792 | 2 MB | Q4 2013 | $52 |
2 (2) | E3827 | 8 W / 1.75 GHz | 1 MB | $41 | |||||||
E3826 | 7 W / 1.46 GHz | 533 | 677 | $37 | |||||||
E3825 | 6 W / 1.33 GHz | — | $34 | ||||||||
1 (1) | E3815 | 5 W / 1.46 GHz | 400 | 512 KB | $31 | ||||||
2 (2) | E3805 | — | 3 W / 1.33 GHz | — | 1 MB | Q4 2014 |
List of mobile processors as follows:
Target segment | Cores (threads) | Processor branding & model | GPU model | TDP | CPU turbo (GHz) | GPU freq. (MHz) | L2 cache (MB) | Release date | Price (USD) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Base | Turbo | ||||||||||
Value | 4 (4) | Pentium | N3540 | Intel HD Graphics (4 EU) | 7.5 W / 2.16 GHz | 2.66 | 313 | 896 | 2 | 2014-07-20 | $161 |
N3530 | 2.58 | 2014-02-23 | |||||||||
N3520 | 7.5 W / 2.166 GHz | 2.42 | 854 | 2013-11-03 | |||||||
N3510 | 7.5 W / 2.0 GHz | — | 750 | 2013-09-11 | |||||||
Celeron | N2940 | 7.5 W / 1.83 GHz | 2.25 | 854 | Q3 2014 | $107 | |||||
N2930 | 2.16 | 2014-02-23 | |||||||||
N2920 | 7.5 W / 1.86 GHz | 2.0 | 844 | 2013-11-03 | |||||||
N2910 | 7.5 W / 1.6 GHz | — | 756 | 2013-09-11 | |||||||
2 (2) | N2840 | 7.5 W / 2.16 GHz | 2.58 | 311 | 792 | 1 | Q3 2014 | ||||
N2830 | 2.41 | 313 | 750 | 2014-02-23 | |||||||
N2820 | 7.5 W / 2.13 GHz | 2.39 | 756 | 2013-11-03 | |||||||
N2815 | 7.5 W / 1.86 GHz | 2.13 | |||||||||
N2810 | 7.5 W / 2.0 GHz | — | 2013-09-11 | ||||||||
N2808 | 4.5 W / 1.58 GHz | 2.25 | 311 | 792 | Q3 2014 | ||||||
N2807 | 4.3 W / 1.58 GHz | 2.16 | 313 | 750 | 2014-02-23 | ||||||
N2806 | 4.5 W / 1.6 GHz | 2.0 | 756 | 2013-11-03 | |||||||
N2805 | 4.3 W / 1.46 GHz | — | 667 | 2013-09-11 |
List of tablet and hybrid processors as follows:
Target segment | Cores (threads) | Processor branding & model | SDP [28] (W) | CPU freq. (GHz) | L2 cache (MB) | GPU model | GPU freq. (MHz) | Memory | Max display resolution | Socket | Release date | Price (USD) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base | Turbo | Base | Burst | Type | # channels | Max speed | Max bandwidth | Max supported | |||||||||||
Value | 4 (4) | Atom | Z3795 | 2 | 1.66 | 2.39 | 2 | HD Graphics (4 EU) | 311 | 778 | LPDDR3 | 2x64b | 1067MT/s | 17.1 GB/s | 4 GB | FCBGA1380 | Q1 2014 | $40.00 | |
Z3785 | 2.2 | 1.49 | 2.41 | 313 | 833 | 1333MT/s | 21.3 GB/s | Q2 2014 | |||||||||||
Z3775 | 2 | 1.46 | 2.39 | 311 | 778 | 1067MT/s | 17.1 GB/s | Q1 2014 | $35.00 | ||||||||||
Z3775D | 2.2 | 1.49 | 2.41 | 792 | DDR3L-RS | 1x64b | 1333MT/s | 10.6 GB/s | Q1 2014 | $35.00 | |||||||||
Z3770 | 2 | 1.46 | 2.39 | 667 | LPDDR3 | 2x64b | 1067MT/s | 17.1 GB/s | 2560×1600 | 11 September 2013 | $37.00 | ||||||||
Z3770D | 2.2 | 1.5 | 2.41 | 313 | 688 | DDR3L-RS | 1x64b | 1333MT/s | 10.6 GB/s | 2 GB | 1920×1280 | ||||||||
Z3740 | 2 | 1.33 | 1.86 | 311 | 667 | LPDDR3 | 2x64b | 1067MT/s | 17.1 GB/s | 4 GB | 2560×1600 | $32.00 | |||||||
Z3740D | 2.2 | 1.83 | 313 | 688 | DDR3L-RS | 1x64b | 1333MT/s | 10.6 GB/s | 2 GB | 1920×1280 | |||||||||
Z3735F | 311 | 646 | 10.6 GB/s | 1920×1200 | FCBGA592 | Q1 2014 | $17.00 | ||||||||||||
Z3735G | 1x32b | 5.3 GB/s | 1 GB | 1200×800 | |||||||||||||||
2 (2) | Z3680 | 2.0 | 1 | 667 | LPDDR3 | 1x64b | 1067MT/s | 8.5 GB/s | 1280×800 | 11 September 2013 | — | ||||||||
Z3680D | 688 | DDR3L-RS | 1x64b | 1333MT/s | 10.6 GB/s | 2 GB | 1920×1280 |
List of smartphone processors as follows:
Model | sSpec number | Cores | Clock rate | GPU frequency | L2 cache | I/O bus | Memory | Voltage | TDP | Socket | Release date | Part number(s) | Release price (USD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atom Z3460 |
| 2 | 1.6 GHz | 400–457 MHz | 1 MB | 2 × LPDDR3-1066 | March 2014 |
| |||||
Atom Z3480 |
| 2 | 2.13 GHz | 457–533 MHz | 1 MB | 2 × LPDDR3-1066 | March 2014 |
|
List of smartphone processors as follows:
Model | sSpec number | Cores | Clock rate | GPU frequency | L2 cache | I/O bus | Memory | Voltage | TDP | Socket | Release date | Part number(s) | Release price (USD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atom Z3530 |
| 4 | 1.33 GHz | 457 MHz | 2 × 1 MB | 2 × LPDDR3-1600 | H2 2014 |
| |||||
Atom Z3560 |
| 4 | 1.83 GHz | 457–533 MHz | 2 × 1 MB | 2 × LPDDR3-1600 | H2 2014 |
| |||||
Atom Z3570 | 4 | 2.00 GHz | 457–640 MHz | 2 × 1 MB | 2 × LPDDR3-1600 | Q4 2014 | |||||||
Atom Z3580 |
| 4 | 2.33 GHz | 457–533 MHz | 2 × 1 MB | 2 × LPDDR3-1600 | H2 2014 |
| |||||
Atom Z3590 | 4 | 2.50 GHz | 457–640 MHz | 2 × 1 MB | 2 × LPDDR3-1600 | H2 2015 |
List of desktop processors as follows:
Target segment | Cores (threads) | Processor branding and model | GPU model | TDP | Turbo (GHz) | GPU freq. (MHz) | L2 cache (MB) | Release date | Price (USD) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Brand name & model number | EU | 1-core | Base | Turbo | ||||||||
Desktop | 4 (4) | Pentium | J3710 | HD Graphics 405 | 18 | 6.5 W / 1.6 GHz | 2.64 | 400 | 740 | 2 | January 2016 | N/A |
Celeron | J3160 | HD Graphics 400 | 12 | 6 W / 1.6 GHz | 2.24 | 320 | 700 | |||||
2 (2) | J3060 | 2.48 | 2 [note 1] |
List of mobile processors as follows:
Target segment | Cores (threads) | Processor branding and model | GPU Model | TDP | Turbo (GHz) | GPU freq. (MHz) | L2 cache (MB) | Release date | Price (USD) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Brand name & model number | EU | 1-core | Base | Turbo | ||||||||
Mobile | 4 (4) | Pentium | N3710 | HD Graphics 405 | 16 | 6W / 1.6 GHz | 2.56 | 400 | 700 | 2 | Q1 2016 | $161 |
N3700 | HD Graphics (Braswell) [note 2] | 2.4 | Q1 2015 | |||||||||
Celeron | N3160 | HD Graphics 400 | 12 | 2.24 | 320 | 640 | Q1 2016 | $107 | ||||
N3150 | HD Graphics (Braswell) [note 2] | 2.08 | Q1 2015 | |||||||||
2 (2) | N3060 | HD Graphics 400 | 2.48 | 600 | 2 [note 1] | Q1 2016 | ||||||
N3050 | HD Graphics (Braswell) [note 2] | 2.16 | Q1 2015 | |||||||||
N3010 | HD Graphics 400 | 4W / 1.04 GHz | 2.24 | Q1 2016 | ||||||||
N3000 | HD Graphics (Braswell) [note 2] | 2.08 | Q1 2015 |
List of smartphone and tablet processors as follows:
Target segment | Cores (threads) | Processor branding and model | SDP (W) | L2 cache (MB) | CPU freq. (GHz) | GPU | Socket | Release date | Price (USD) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brand name | EU | Freq. (MHz) | ||||||||||||
Base | Turbo 1-core | Base | Turbo | |||||||||||
Tablet | 4 (4) | Atom x7 | Z8750 | 2 | 2 | 1.6 | 2.56 | HD Graphics | 16 | 200 | 600 | FCBGA1380 | Q1 2016 | $37 |
Z8700 | 2.4 | Q1 2015 | ||||||||||||
Atom x5 | Z8550 | 1.44 | 12 | $27 | ||||||||||
Z8500 | 2.24 | |||||||||||||
Z8350 | 1.92 | 500 | FCBGA594 | Q1 2016 | $21 | |||||||||
Z8330 | ||||||||||||||
Z8300 | 1.84 | Q2 2015 | $21 |
Silvermont based processor cores have been used in Knights Landing versions of Intel's Xeon Phi multiprocessor HPC chips, with changes for HPC including AVX-512 vector units. [29] [30]
The Pentium is a microprocessor introduced by Intel on March 22, 1993. It is the first CPU using the Pentium brand. Considered the fifth generation in the x86 (8086) compatible line of processors, succeeding the i486, its implementation and microarchitecture was internally called P5.
Hyper-threading is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others.
The Pentium II is a brand of sixth-generation Intel x86 microprocessors based on the P6 microarchitecture, introduced on May 7, 1997. It combined the P6 microarchitecture seen on the Pentium Pro with the MMX instruction set of the Pentium MMX.
Xeon is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for error correction code (ECC) memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture (MCA). They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus, which replaced the older QuickPath Interconnect (QPI) bus.
The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2001, Intel released the Foster core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture.
The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.
The Intel Core microarchitecture is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst, Tejas and Jayhawk. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.
As of 2020, the x86 architecture is used in most high end compute-intensive computers, including cloud computing, servers, workstations, and many less powerful computers, including personal computer desktops and laptops. The ARM architecture is used in most other product categories, especially high-volume battery powered mobile devices such as smartphones and tablet computers.
Pentium is a series of x86 architecture-compatible microprocessors produced by Intel from 1993 to 2023. The original Pentium was Intel's fifth generation processor, succeeding the i486; Pentium was Intel's flagship processor line for over a decade until the introduction of the Intel Core line in 2006. Pentium-branded processors released from 2009 onwards were considered entry-level products positioned above the low-end Atom and Celeron series, but below the faster Core lineup and workstation/server Xeon series.
Intel Atom is a line of IA-32 and x86-64 instruction set ultra-low-voltage processors by Intel Corporation designed to reduce electric consumption and power dissipation in comparison with ordinary processors of the Intel Core series. Atom is mainly used in netbooks, nettops, embedded applications ranging from health care to advanced robotics, mobile Internet devices (MIDs) and phones. The line was originally designed in 45 nm complementary metal–oxide–semiconductor (CMOS) technology and subsequent models, codenamed Cedar, used a 32 nm process.
Tick–tock was a production model adopted in 2007 by chip manufacturer Intel. Under this model, every microarchitecture change (tock) was followed by a die shrink of the process technology (tick). It was replaced by the process–architecture–optimization model, which was announced in 2016 and is like a tick–tock cycle followed by an optimization phase. As a general engineering model, tick–tock is a model that refreshes one side of a binary system each release cycle.
Wolfdale is the code name for a processor from Intel that is sold in varying configurations as Core 2 Duo, Celeron, Pentium and Xeon. In Intel's Tick-Tock cycle, the 2007/2008 "Tick" was Penryn microarchitecture, the shrink of the Merom microarchitecture to 45 nanometers as CPUID model 23. This replaced the Conroe processor with Wolfdale.
Intel Graphics Technology (GT) is the collective name for a series of integrated graphics processors (IGPs) produced by Intel that are manufactured on the same package or die as the central processing unit (CPU). It was first introduced in 2010 as Intel HD Graphics and renamed in 2017 as Intel UHD Graphics.
In Intel's Tick-Tock cycle, the 2007/2008 "Tick" was the shrink of the Core microarchitecture to 45 nanometers as CPUID model 23. In Core 2 processors, it is used with the code names Penryn, Wolfdale and Yorkfield, some of which are also sold as Celeron, Pentium and Xeon processors. In the Xeon brand, the Wolfdale-DP and Harpertown code names are used for LGA 771 based MCMs with two or four active Wolfdale cores.
Atom is a system on a chip (SoC) platform designed for smartphones and tablet computers, launched by Intel in 2012. It is a continuation of the partnership announced by Intel and Google on September 13, 2011 to provide support for the Android operating system on Intel x86 processors. This range competes with existing SoCs developed for the smartphone and tablet market from companies such as Texas Instruments, Nvidia, Qualcomm and Samsung. Unlike these companies, which use ARM-based CPUs designed from the beginning to consume very low power, Intel has adapted the x86-based Intel Atom line of CPU developed for low power usage in netbooks, to even lower power usage.
Broadwell is the fifth generation of the Intel Core processor. It is Intel's codename for the 14 nanometer die shrink of its Haswell microarchitecture. It is a "tick" in Intel's tick–tock principle as the next step in semiconductor fabrication. Like some of the previous tick-tock iterations, Broadwell did not completely replace the full range of CPUs from the previous microarchitecture (Haswell), as there were no low-end desktop CPUs based on Broadwell.
Goldmont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. They allow only one thread per core.
Goldmont Plus is a microarchitecture for low-power Celeron and Pentium Silver branded processors used in systems on a chip (SoCs) made by Intel. The Gemini Lake platform with 14 nm Goldmont Plus core was officially launched on December 11, 2017. Intel launched the Gemini Lake Refresh platform on November 4, 2019.
Tremont is a microarchitecture for low-power Atom, Celeron and Pentium Silver branded processors used in systems on a chip (SoCs) made by Intel. It is the successor to Goldmont Plus. Intel officially launched Elkhart Lake platform with 10 nm Tremont core on September 23, 2020. Intel officially launched Jasper Lake platform with 10 nm Tremont core on January 11, 2021.