Golden Cove

Last updated • 5 min readFrom Wikipedia, The Free Encyclopedia
Golden Cove
Golden Cove.png
General information
LaunchedNovember 4, 2021;2 years ago (November 4, 2021) [1]
Designed by Intel
Common manufacturer
  • Intel
Performance
Max. CPU clock rate 1.0 GHz to 5.5 GHz
Cache
L1 cache 80 KB per core:
  • 32 KB instructions
  • 48 KB data
L2 cachePer core:
  • 1.25 MB (client)
  • 2 MB (server)
Architecture and classification
Technology node Intel 7 (previously known as 10ESF)
Instruction set x86, x86-64
Extensions
Products, models, variants
Product code names
History
Predecessors
Successor Raptor Cove

Golden Cove is a codename for a CPU microarchitecture developed by Intel and released in November 2021. It succeeds four microarchitectures: Sunny Cove, Skylake, Willow Cove, and Cypress Cove. [2] [3] [4] It is fabricated using Intel's Intel 7 process node, previously referred to as 10 nm Enhanced SuperFin (10ESF).

Contents

The microarchitecture is used in the high-performance cores (P-core) of the 12th-generation Intel Core processors (codenamed "Alder Lake") and fourth-generation Xeon Scalable server processors (codenamed "Sapphire Rapids"). [4] [5]

History and features

Intel first unveiled Golden Cove during their Architecture Day 2020, [6] with further details released at the same event in August 2021. [7] Similar to Skylake, Golden Cove was described by Intel as a major update to the core microarchitecture, with Intel stating that it would "allow performance for the next decade of compute". Intel also described Golden Cove as the largest microarchitectural upgrade to the Core family in a decade, touting a 19% increase in instructions per cycle (IPC) over Cypress Cove. [7] At the event in 2021, Intel revealed the Gracemont and Golden Cove architectures would both be bundled in a hybrid architecture into its Alder Lake CPUs for desktops and laptops. It was described as "the successor to Intel's 10-nm Sunny Cove microarchitecture." [8] It was also announced that the Golden Cove cores would support hyper-threading, which allows two threads to run on one core. [9] "P-cores" based on Golden Cove stand for "performance", while "E-cores" based on Gracemont stand for "efficient." [10]

In August 2021, Golden Cove design followed "the Willow Cove core in Tiger Lake, the Sunny Cove core in Ice Lake, and the derivative Cypress Cove core in Rocket Lake." [11]

Succeeding Willow Cove, in 2021 the Golden Cove was described as competing against AMD's Zen 3 and Zen 4-based processors. Golden Cove is based on the 10 nm Enhanced SuperFin node by Intel, which was later renamed to Intel 7. [12] When modifying Willow Cove, writes Hardware Times, Intel announced in 2021 that both Golden Cove and Gracemont "expanded the back and front-end, improved the out-of-order execution (OoO) capabilities, and focused more on power efficiency and real-world performance." [12]

In January 2022, TechRadar noted that the upcoming Intel Alder Lake-P processors, mobile variants of Alder Lake with Golden Cove, could possibly use up to "six Golden Cove cores with 12 threads alongside eight Gracemont cores with eight threads," noting other permutations were also possible. [13] In April 2022, it was reported that Raptor Lake, a "refresh" of Alder Lake, might utilize the Golden Cove and Gracemont cores. [14] It was also reported in April 2022 that Sapphire Rapids would utilize Golden Cove cores. [15]

Improvements

According to AnandTech in August 2021, "Intel sees the Golden Cove as a major step-function update, with massive revamps of the fundamental building blocks of the CPU, going as far as calling it as allowing performance for the next decade of compute. [11] AnandTech in August 2021 also wrote that the last similar level of upgrades to Intel's "core front-end" was Sunny Cove, as compared to Willow Cove and Cypress Cove, which unlike Golden Cove "were more iterative designs focusing on the memory subsystem." Golden Cove was described as having "gigantic changes to the microarchitecture’s front-end", with Intel describing those changes as the largest upgrades to microarchitecture in a decade, since Skylake. [11]

The P-core Golden Cove microarchitecture supports six-wide decode, higher than the prior four, and has split the execution ports to allow for more operations to execute at once, enabling higher IPC and ILP from workflow that can take advantage. Usually a wider decode consumes a lot more power, but Intel says that its micro-op cache (now 4K) and front-end are improved enough that the decode engine spends 80% of its time power gated." [16]

Intel describes a number of improvements over its predecessor, Sunny Cove.

Products

The microarchitecture is used in the high-performance cores of the 12th generation of Intel Core hybrid processors (codenamed "Alder Lake") and the fourth generation of Xeon scalable processors (codenamed "Sapphire Rapids").

Raptor Cove

Raptor Cove
General information
LaunchedOctober 22, 2022;21 months ago (2022-10-22)
Marketed by Intel
Designed byIntel
Common manufacturer
  • Intel
Performance
Max. CPU clock rate 1.2 GHz to 6.2 GHz
Cache
L1 cache 80 KB per core:
  • 32 KB instructions
  • 48 KB data
L2 cache2 MB per core
L3 cache3 MB per core
Architecture and classification
Technology node Intel 7 (previously known as 10ESF)
Instruction set x86, x86-64
Extensions
Physical specifications
Cores
  • 1-64
Products, models, variants
Core names
History
Predecessor Golden Cove
Successor Redwood Cove

Raptor Cove, released on October 20, 2022 with Raptor Lake processors, is a refresh of the Golden Cove microarchitecture with the following changes:

Raptor Cove is also used in the Emerald Rapids server processors.

Since Raptor Cove is basically identical to Golden Cove, 13th Gen Core models come with B0 stepping use Raptor Cove exclusively while others with different steppings (such as C0, H0, J0 and Q0) still use Golden Cove. Notably, some models come with multiple steppings (such as i5-13400F and i7-13700HX) are using a different microarchitecture but they are selling at the same time.[ citation needed ]

See also

Related Research Articles

Tick–tock was a production model adopted in 2007 by chip manufacturer Intel. Under this model, every microarchitecture change (tock) was followed by a die shrink of the process technology (tick). It was replaced by the process–architecture–optimization model, which was announced in 2016 and is like a tick–tock cycle followed by an optimization phase. As a general engineering model, tick–tock is a model that refreshes one side of a binary system each release cycle.

<span class="mw-page-title-main">Intel Core</span> Line of CPUs by Intel

Intel Core is a line of multi-core central processing units (CPUs) for midrange, embedded, workstation, high-end and enthusiast computer markets marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets.

<span class="mw-page-title-main">Skylake (microarchitecture)</span> CPU microarchitecture by Intel

Skylake is Intel's codename for its sixth generation Core microprocessor family that was launched on August 5, 2015, succeeding the Broadwell microarchitecture. Skylake is a microarchitecture redesign using the same 14 nm manufacturing process technology as its predecessor, serving as a tock in Intel's tick–tock manufacturing and design model. According to Intel, the redesign brings greater CPU and GPU performance and reduced power consumption. Skylake CPUs share their microarchitecture with Kaby Lake, Coffee Lake, Whiskey Lake, and Comet Lake CPUs.

Intel Quick Sync Video is Intel's brand for its dedicated video encoding and decoding hardware core. Quick Sync was introduced with the Sandy Bridge CPU microarchitecture on 9 January 2011 and has been found on the die of Intel CPUs ever since.

Cannon Lake is Intel's codename for the 8th generation of Core processors based on Palm Cove, a 10 nm die shrink of the Kaby Lake microarchitecture. As a die shrink, Palm Cove is a new process in Intel's process-architecture-optimization execution plan as the next step in semiconductor fabrication. Cannon Lake CPUs are the first mainstream CPUs to include the AVX-512 instruction set.

<span class="mw-page-title-main">Kaby Lake</span> Intel microprocessor, released in 2016

Kaby Lake is Intel's codename for its seventh generation Core microprocessor family announced on August 30, 2016. Like the preceding Skylake, Kaby Lake is produced using a 14 nanometer manufacturing process technology. Breaking with Intel's previous "tick–tock" manufacturing and design model, Kaby Lake represents the optimized step of the newer process–architecture–optimization model. Kaby Lake began shipping to manufacturers and OEMs in the second quarter of 2016, with its desktop chips officially launched in January 2017.

Ice Lake is Intel's codename for the 10th generation Intel Core mobile and 3rd generation Xeon Scalable server processors based on the Sunny Cove microarchitecture. Ice Lake represents an Architecture step in Intel's process–architecture–optimization model. Produced on the second generation of Intel's 10 nm process, 10 nm+, Ice Lake is Intel's second microarchitecture to be manufactured on the 10 nm process, following the limited launch of Cannon Lake in 2018. However, Intel altered their naming scheme in 2020 for the 10 nm process. In this new naming scheme, Ice Lake's manufacturing process is called simply 10 nm, without any appended pluses.

<span class="mw-page-title-main">Coffee Lake</span> Eighth-generation Intel Core microprocessor family

Coffee Lake is Intel's codename for its eighth-generation Core microprocessor family, announced on September 25, 2017. It is manufactured using Intel's second 14 nm process node refinement. Desktop Coffee Lake processors introduced i5 and i7 CPUs featuring six cores and Core i3 CPUs with four cores and no hyperthreading.

Sapphire Rapids is a codename for Intel's server and workstation processors based on the Golden Cove microarchitecture and produced using Intel 7. It features up to 60 cores and an array of accelerators, and it is the first generation of Intel server and workstation processors to use a chiplet design.

<span class="mw-page-title-main">Intel Xe</span> Intel GPU architecture

Intel Xe, earlier known unofficially as Gen12, is a GPU architecture developed by Intel.

Sunny Cove is a codename for a CPU microarchitecture developed by Intel, first released in September 2019. It succeeds the Palm Cove microarchitecture and is fabricated using Intel's 10 nm process node. The microarchitecture is implemented in 10th-generation Intel Core processors for mobile and third generation Xeon scalable server processors. 10th-generation Intel Core mobile processors were released in September 2019, while the Xeon server processors were released on April 6, 2021.

Rocket Lake is Intel's codename for its 11th generation Core microprocessors. Released on March 30, 2021, it is based on the new Cypress Cove microarchitecture, a variant of Sunny Cove backported to Intel's 14 nm process node. Rocket Lake cores contain significantly more transistors than Skylake-derived Comet Lake cores.

Tremont is a microarchitecture for low-power Atom, Celeron and Pentium Silver branded processors used in systems on a chip (SoCs) made by Intel. It is the successor to Goldmont Plus. Intel officially launched Elkhart Lake platform with 10 nm Tremont core on September 23, 2020. Intel officially launched Jasper Lake platform with 10 nm Tremont core on January 11, 2021.

<span class="mw-page-title-main">Alder Lake</span> Intel microprocessor family

Alder Lake is Intel's codename for the 12th generation of Intel Core processors based on a hybrid architecture utilizing Golden Cove performance cores and Gracemont efficient cores. It is fabricated using Intel's Intel 7 process, previously referred to as Intel 10 nm Enhanced SuperFin (10ESF). The 10ESF has a 10%-15% boost in performance over the 10SF used in the mobile Tiger Lake processors. Intel officially announced 12th Gen Intel Core CPUs on October 27, 2021, mobile CPUs and non-K series desktop CPUs on January 4, 2022, Alder Lake-P and -U series on February 23, 2022, and Alder Lake-HX series on May 10, 2022.

<span class="mw-page-title-main">Gracemont (microarchitecture)</span> CPU microarchitecture by Intel

Gracemont is a microarchitecture for low-power processors used in systems on a chip (SoCs) made by Intel, and is the successor to Tremont. Like its predecessor, it is also implemented as low-power cores in a hybrid design of the Alder Lake, Raptor Lake and Raptor Lake Refresh processors.

Willow Cove is a codename for a CPU microarchitecture developed by Intel and released in September 2020. Willow Cove is the successor to the Sunny Cove microarchitecture, and is fabricated using Intel's enhanced 10 nm process node called 10 nm SuperFin (10SF). The microarchitecture powers 11th-generation Intel Core mobile processors.

Emerald Rapids is the codename for Intel's fifth generation Xeon Scalable server processors based on the Intel 7 node. Emerald Rapids CPUs are designed for data centers; the roughly contemporary Raptor Lake is intended for desktop and mobile usage. Nevine Nassif is a chief engineer for this generation.

Granite Rapids is the codename for 6th generation Xeon Scalable server processors designed by Intel, set to launch in 2024. Featuring up to 128 P-cores, Granite Rapids is designed for high performance computing applications. The platform equivalent Sierra Forest processors with up to 288 E-cores launched in June 2024 before Granite Rapids.

Raptor Lake is Intel's codename for the 13th and 14th generations of Intel Core processors based on a hybrid architecture, utilizing Raptor Cove performance cores and Gracemont efficient cores. Like Alder Lake, Raptor Lake is fabricated using Intel's Intel 7 process. Raptor Lake features up to 24 cores and 32 threads and is socket compatible with Alder Lake systems. Like earlier generations, Raptor Lake processors also need accompanying chipsets.

References

  1. Cutress, Ian (October 27, 2021). "Intel 12th Gen Core Alder Lake for Desktops: Top SKUs Only, Coming November 4th". AnandTech. Retrieved November 27, 2022.
  2. Dexter, Alan (April 6, 2021). "Intel Alder Lake CPUs: What are they, when will they launch, and how fast will they be?". PC Gamer. Retrieved April 7, 2021.
  3. Mujtaba, Hassan (May 21, 2019). "Intel Xeon Roadmap Leak, 10nm Ice Lake, Sapphire Rapids CPU Detailed". Wccftech. Retrieved March 14, 2020.
  4. 1 2 Shilov, Anton (27 October 2020). "Intel: Alder Lake Sampling, Sapphire Rapids Samples in Q4". Tom's Hardware. Retrieved November 27, 2022.
  5. Pirzada, Usman (October 7, 2020). "Intel Sapphire Rapids: MCM Design, 56 Golden Cove Cores, 64GB HBM2 On-Board Memory, Massive IPC Improvement and 400 Watt TDP". Wccftech. Retrieved April 6, 2021.
  6. Cutress, Ian (August 14, 2020). "Intel Alder Lake: Confirmed x86 Hybrid with Golden Cove and Gracemont for 2021". AnandTech. Retrieved February 15, 2021.
  7. 1 2 3 4 Cutress, Ian; Frumusanu, Andrei (August 19, 2021). "Intel Architecture Day 2021: Alder Lake, Golden Cove, and Gracemont Detailed". AnandTech. Retrieved August 21, 2021.
  8. Morra, James (August 25, 2021). "Intel Enters New Era With Golden Cove and Gracemont Cores". Electronic Design. Retrieved May 21, 2022.
  9. Alcorn, Paul (19 August 2021). "Intel Architecture Day 2021: Alder Lake Chips, Golden Cove and Gracemont Cores". Tom's Hardware. Retrieved May 21, 2022.
  10. Stobing, Chris (November 4, 2021). "Intel Core i9-12900K Review". PCMag. Retrieved May 26, 2022.
  11. 1 2 3 Cutress, Ian; Frumusanu, Andrew (August 19, 2021). "Intel Architecture Day 2021: Alder Lake, Golden Cove, and Gracemont Detailed". AnandTech. Retrieved May 24, 2022.
  12. 1 2 "Intel Golden Cove Core Architecture Deep Dive: vs Zen 3 and Sunny Cove". Hardware Times. November 8, 2021. Retrieved May 22, 2022.
  13. Loeffler, John (January 28, 2022). "Intel Alder Lake Release Date - Specs and Price, Everything We Know". TechRadar. Retrieved May 26, 2022.
  14. Nguyen, Chuong (April 18, 2022). "Intel Raptor Lake CPUs: Everything we know about the 13th-gen processors". Digital Trends. Retrieved May 21, 2022.
  15. Spadafora, Anthony (April 19, 2022). "Intel Sapphire Rapids leak offers sneak peek at specs and performance". TechRadar. Retrieved May 22, 2022.
  16. Cutress, Ian; Frumusanu, Andrew (November 4, 2021). "The Intel 12th Gen Core i9-12900K Review: Hybrid Performance Brings Hybrid Complexity". AnandTech. Retrieved May 24, 2022.
  17. 1 2 "Popping the Hood on Golden Cove". Chips and Cheese. December 2, 2021. Retrieved December 28, 2021.
  18. "Intel® Architecture Instruction Set Extensions and Future Features: Programming Reference" (PDF). Intel. September 2022. Retrieved November 27, 2022.
  19. "Intel 13th Gen Core "Raptor Lake" Desktop Processors Launched: +15% ST, +41% MT Uplift". TechPowerUp. September 27, 2022. Retrieved November 27, 2022.