Tejas and Jayhawk

Last updated

Tejas was a code name for Intel's microprocessor, which was to be a successor to the latest Pentium 4 with the Prescott core and was sometimes referred to as Pentium V. [1] Jayhawk was a code name for its Xeon counterpart. The cancellation of the processors in May 2004 underscored Intel's historical transition of its focus on single-core processors to multi-core processors.

Contents

History

In early 2003, Intel showed Tejas and a plan to release it sometime in 2004 with possible delays into 2005. Its development however, was cancelled on May 7, 2004. [2] Analysts attribute these issues to heat and power consumption problems due to Intel's goal of reaching ever higher clock speeds, at the detriment of work done per clock (and therefore performance per clock). This was already the case with Prescott and its mediocre performance increase over Northwood despite higher clock speeds, not to mention heavy competition from Advanced Micro Devices with their Athlon 64. Prescott was supposed to attain >5 GHz speeds with ease, yet this was not possible due to physical limitations such as heat generated and power consumed at ambient temperatures. Tejas went even further ahead with this paradigm, with Intel targeting 10GHz clock speeds by 2011 [3] back in July 2000, this statement being made a few months before the Pentium 4 launched. It was soon enough clear this represented a dead end.

This cancellation reflected Intel's intention to focus on dual-core chips for the Itanium platform. With respect to desktop processors, Intel's development efforts shifted to the Pentium M microarchitecture (itself a derivative of the P6 microarchitecture last used in the Pentium III) used in the Centrino notebook platform, which offered greatly improved performance per watt compared to Prescott and other NetBurst designs. The result of modernizing the P6 microarchitecture was the Core processor line, and later the Core 2 line, offering Intel's first native dual core products for desktops and laptops while regaining the performance crown [4] back from AMD.

This defined the end for the NetBurst architecture, with Core setting the foundation and path for power efficient architectures that followed along the Tick–tock model. Although NetBurst was a dead end for the company, its concepts were later reused and repurposed [5] in Sandy Bridge.

To bridge the gap left by Tejas' cancellation in the x86 market, Intel did one last revision to NetBurst, codenamed Cedar Mill (single core) and Presler (dual core).

Design and microarchitecture

Tejas and Jayhawk were to make several improvements on the Pentium 4's NetBurst microarchitecture. Tejas was originally to be built on a 90 nm process, later moving to a 65 nm process. The 90 nm version of the processor was reported to have 1 MB L2 cache, while the 65 nm chip would increase the cache to 2 MB. There was also to be a dual core version of Tejas called Cedarmill (or Cedar Mill depending on the source). This Cedarmill should not be confused with the 65 nm Cedar Mill-based Pentium 4, which appears to be what the codename was recycled for.

The trace cache capacity would likely have been increased, and the number of pipeline stages was increased to between 40 and 50 stages. [6] There would have been an improved version of Hyper-Threading, as well as a new version of SSE, which was later backported to the Intel Core 2 series and named SSSE3. Tejas was slated to operate at frequencies of 7 GHz [1] or higher. However, it's likely that Tejas wouldn't have had linear performance scaling, as it would on average have executed fewer instructions per clock cycle due to more pipeline bubbles from branch mispredicts and data cache misses. Also, it would have run hotter as well with a TDP much higher than the Prescott core of Pentium 4. The CPU was cancelled late in its development after it had reached its tapeout phase. [6]

Initial claims reported early samples of single core 90 nm Tejas running at 2.8 GHz and rated for 150 W TDP on the LGA 775 socket, [7] a notable increase over single core 90 nm Prescott (Pentium 4 521, 2.8 GHz, 84 W TDP) [8] and higher than 90 nm dual core Smithfield (Pentium D 820, 2.8 GHz, 95 W TDP). [9] In contrast, 65 nm dual core Core 2 Duo processors had a maximum of 65 W TDP (E6850, 3.00 GHz) [10] while being much more efficient with markedly higher performance per clock.

However, the existence of engineering samples have been challenged and no source indicates that tape-out of Tejas ever existed - the sample shown in the Anandtech article [7] being a Prescott B0 ES. [11] Most probably only thermal samples of Tejas were produced.

See also

Related Research Articles

<span class="mw-page-title-main">Athlon</span> Brand name for several AMD processors

Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by AMD. The original Athlon was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz (GHz). It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit (APU) chips targeting the Socket AM1 desktop SoC architecture, and Socket AM4 Zen microarchitecture. The modern Zen-based Athlon with a Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor.

<span class="mw-page-title-main">Celeron</span> Line of discontinued microprocessors made by Intel

Celeron is a discontinued series of low-end IA-32 and x86-64 computer microprocessor models targeted at low-cost personal computers, manufactured by Intel. The first Celeron-branded CPU was introduced on April 15, 1998, and was based on the Pentium II.

<span class="mw-page-title-main">Pentium 4</span> Brand by Intel

Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. It was removed from the official price lists starting in 2010, being replaced by Pentium Dual-Core.

<span class="mw-page-title-main">Pentium III</span> Line of desktop and mobile microprocessors produced by Intel

The Pentium III brand refers to Intel's 32-bit x86 desktop and mobile CPUs based on the sixth-generation P6 microarchitecture introduced on February 28, 1999. The brand's initial processors were very similar to the earlier Pentium II-branded processors. The most notable differences were the addition of the Streaming SIMD Extensions (SSE) instruction set, and the introduction of a controversial serial number embedded in the chip during manufacturing. The Pentium III is also a single-core processor.

<span class="mw-page-title-main">Pentium M</span> Family of Intel microprocessors

The Pentium M is a family of mobile 32-bit single-core x86 microprocessors introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The Pentium M processors had a maximum thermal design power (TDP) of 5–27 W depending on the model, and were intended for use in laptops. They evolved from the core of the last Pentium III–branded CPU by adding the front-side bus (FSB) interface of Pentium 4, an improved instruction decoding and issuing front end, improved branch prediction, SSE2 support, and a much larger cache. The first Pentium M–branded CPU, code-named Banias, was followed by Dothan. The Pentium M line was removed from the official price lists in July 2009, when the Pentium M-branded processors were succeeded by the Core-branded dual-core mobile Yonah CPU with a modified microarchitecture. It replaced the Pentium 4 M processor, which suffered from power consumption and heat problems.

<span class="mw-page-title-main">Xeon</span> Line of Intel server and workstation processors

Xeon is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded system markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for ECC memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture. They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus.

The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2001, Intel released the Foster core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture.

<span class="mw-page-title-main">Pentium D</span> Family of Intel microprocessors

Pentium D is a range of desktop 64-bit x86-64 processors based on the NetBurst microarchitecture, which is the dual-core variant of the Pentium 4 manufactured by Intel. Each CPU comprised two cores. The brand's first processor, codenamed Smithfield and manufactured on the 90 nm process, was released on May 25, 2005, followed by the 65 nm Presler nine months later. The core implementation on the 90 nm "Smithfield" and later 65 nm "Presler" are designed differently but are functionally the same. The 90 nm "Smithfield" contains a single die, with two adjoined but functionally separate CPU cores cut from the same wafer. The later 65 nm "Presler" utilized a multi-chip module package, where two discrete dies each containing a single core reside on the CPU substrate. Neither the 90nm "Smithfield" nor the 65 nm "Presler" were capable of direct core to core communication, relying instead on the northbridge link to send information between the 2 cores.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

The Intel Core microarchitecture is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst, Tejas and Jayhawk. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.

Yonah is the code name of Intel's first generation 65 nm process CPU cores, based on cores of the earlier Banias / Dothan Pentium M microarchitecture. Yonah CPU cores were used within Intel's Core Solo and Core Duo mobile microprocessor products. SIMD performance on Yonah improved through the addition of SSE3 instructions and improvements to SSE and SSE2 implementations; integer performance decreased slightly due to higher latency cache. Additionally, Yonah included support for the NX bit.

<span class="mw-page-title-main">Pentium</span> Brand of discontinued microprocessors produced by Intel

Pentium is a discontinued series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium was first released on March 22, 1993. The name "Pentium" is originally derived from the Greek word pente (πεντε), meaning "five", a reference to the prior numeric naming convention of Intel's 80x86 processors (8086–80486), with the Latin ending -ium since the processor would otherwise have been named 80586 using that convention.

<span class="mw-page-title-main">Pentium Dual-Core</span> Line of CPUs by Intel

The Pentium Dual-Core brand was used for mainstream x86-architecture microprocessors from Intel from 2006 to 2009, when it was renamed to Pentium. The processors are based on either the 32-bit Yonah or 64-bit Merom-2M, Allendale, and Wolfdale-3M core, targeted at mobile or desktop computers.

<span class="mw-page-title-main">Conroe (microprocessor)</span> Code name for several Intel processors

Conroe is the code name for many Intel processors sold as Core 2 Duo, Xeon, Pentium Dual-Core and Celeron. It was the first desktop processor to be based on the Core microarchitecture, replacing the NetBurst microarchitecture based Cedar Mill processor. It has product code 80557, which is shared with Allendale and Conroe-L that are very similar but have a smaller L2 cache. Conroe-L has only one processor core and a new CPUID model. The mobile version of Conroe is Merom, the dual-socket server version is Woodcrest, and the quad-core desktop version is Kentsfield. Conroe was replaced by the 45 nm Wolfdale processor.

<span class="mw-page-title-main">Merom (microprocessor)</span> Code name for various Intel processors

Merom is the code name for various Intel processors that are sold as Core 2 Duo, Core 2 Solo, Pentium Dual-Core and Celeron. It was the first mobile processor to be based on the Core microarchitecture, replacing the Enhanced Pentium M-based Yonah processor. Merom has the product code 80537, which is shared with Merom-2M and Merom-L that are very similar but have a smaller L2 cache. Merom-L has only one processor core and a different CPUID model. The desktop version of Merom is Conroe and the dual-socket server version is Woodcrest. Merom was manufactured in a 65 nanometer process, and was succeeded by Penryn, a 45 nm version of the Merom architecture. Together, Penryn and Merom represented the first 'tick-tock' in Intel's Tick-Tock manufacturing paradigm, in which Penryn was the 'tick' to Merom's 'tock'.

<span class="mw-page-title-main">Intel Core</span> Line of CPUs by Intel

Intel Core is a line of streamlined midrange consumer, workstation and enthusiast computer central processing units (CPUs) marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets.

Bonnell is a CPU microarchitecture used by Intel Atom processors which can execute up to two instructions per cycle. Like many other x86 microprocessors, it translates x86 instructions into simpler internal operations prior to execution. The majority of instructions produce one micro-op when translated, with around 4% of instructions used in typical programs producing multiple micro-ops. The number of instructions that produce more than one micro-op is significantly fewer than the P6 and NetBurst microarchitectures. In the Bonnell microarchitecture, internal micro-ops can contain both a memory load and a memory store in connection with an ALU operation, thus being more similar to the x86 level and more powerful than the micro-ops used in previous designs. This enables relatively good performance with only two integer ALUs, and without any instruction reordering, speculative execution or register renaming. A side effect of having no speculative execution is invulnerability against Meltdown and Spectre.

References

  1. 1 2 Dutton, Paul. "Pentium V will launch with 64-bit Windows Elements". The Inquirer. Archived from the original on May 11, 2009. Retrieved 31 March 2013.{{cite web}}: CS1 maint: unfit URL (link)
  2. "Intel cancels Tejas, moves to dual-core designs". EETimes. 2004-05-07.
  3. "ZDNet: The future of chips, Intel style". ZDNet . 2000-08-19. Archived from the original on 2000-08-19. Retrieved 2017-10-10.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. Shimpi, Anand Lal. "Intel's Core 2 Extreme & Core 2 Duo: The Empire Strikes Back". www.anandtech.com. Retrieved 2023-06-24.
  5. "Intel's Netburst: Failure is a Foundation for Success". Chips and Cheese. 2022-06-17. Retrieved 2023-06-24.
  6. 1 2 Chip magicians at work: patching at 45nm
  7. 1 2 Shimpi, Anand Lal. "Covert Ops in Taiwan - Intel Tejas & Socket 775 Unveiled" . Retrieved 2016-12-01.
  8. "Intel® Pentium® 4 Processor 521 supporting HT Technology (1M Cache, 2.80 GHz, 800 MHz FSB) Specifications". Intel® ARK (Product Specs). Retrieved 2016-12-01.
  9. "Intel® Pentium® D Processor 820 (2M Cache, 2.80 GHz, 800 MHz FSB) Specifications". Intel® ARK (Product Specs). Retrieved 2016-12-01.
  10. "Intel® Core™2 Duo Processor E6850 (4M Cache, 3.00 GHz, 1333 MHz FSB) Specifications". Intel® ARK (Product Specs). Retrieved 2016-12-01.
  11. Samuel Demeulemeester (2018-09-11). "J'ai enfin résolu un mystère vieux de 15 ans : ce post de [anandtech] qui disait en janvier [2004] avoir une photo de Tejas alors que mes sources affirmaient que Tejas n'avait jamais tape-out. J'ai retrouvé le CPU ... et c'est un Prescott B0 ES" [I finally solved a 15-years-old mystery: this anandtech post saying in January [2004] to have a photograph of Tejas whereas my sources stated that Tejas was never tape-out. I found the CPU ... and it's a Prescott B0 ES.]. Retrieved 2018-09-12.

General