Model of computation

Last updated

In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.

Computer science study of the theoretical foundations of information and computation

Computer science is the study of processes that interact with data and that can be represented as data in the form of programs. It enables the use of algorithms to manipulate, store, and communicate digital information. A computer scientist studies the theory of computation and the practice of designing software systems.

Computational complexity theory focuses on classifying computational problems according to their inherent difficulty, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

Function (mathematics) Mathematical binary relation

In mathematics, a function was originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable. The concept of function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept.



Models of computation can be classified in three categories: sequential models, functional models, and concurrent models.

Sequential models include:

Functional models include:

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was first introduced by mathematician Alonzo Church in the 1930s as part of his research of the foundations of mathematics.

In mathematical logic and computer science, the general recursive functions or μ-recursive functions are a class of partial functions from natural numbers to natural numbers that are "computable" in an intuitive sense. In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines. The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every μ-recursive function is a primitive recursive function—the most famous example is the Ackermann function.

Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions - and to remove any mention of variables - particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments.

Concurrent models include:

Kahn process networks

Kahn process networks is a distributed model of computation where a group of deterministic sequential processes are communicating through unbounded FIFO channels. The resulting process network exhibits deterministic behavior that does not depend on the various computation or communication delays. The model was originally developed for modeling distributed systems but has proven its convenience for modeling signal processing systems. As such, KPNs have found many applications in modeling embedded systems, high-performance computing systems, and other computational tasks. KPNs were first introduced by Gilles Kahn.

Synchronous Dataflow is a restriction of Kahn process networks where nodes produce and consume a fixed number of data items per firing. This allows static scheduling.

Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic. An interaction net system is specified by a set of agent types and a set of interaction rules. Interaction nets are an inherently distributed model of computation in the sense that computations can take place simultaneously in many parts of an interaction net, and no synchronisation is needed. The latter is guaranteed by the strong confluence property of reduction in this model of computation. Thus interaction nets provide a natural language for massive parallelism. Interaction nets are at the heart of many implementations of the lambda calculus, such as efficient closed reduction and optimal, in Lévy's sense, Lambdascope.

Models differ in their expressive power; for example, each function that can be computed by a Finite state machine can also be computed by a Turing machine, but not vice versa.


In the field of runtime analysis of algorithms, it is common to specify a computational model in terms of primitive operations allowed which have unit cost, or simply unit-cost operations. A commonly used example is the random access machine, which has unit cost for read and write access to all of its memory cells. In this respect, it differs from the above-mentioned Turing machine model.

Analysis of algorithms study of time and space resources used to execute a computational process

In computer science, the analysis of algorithms is the determination of the computational complexity of algorithms, that is the amount of time, storage and/or other resources necessary to execute them. Usually, this involves determining a function that relates the length of an algorithm's input to the number of steps it takes or the number of storage locations it uses. An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same length may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm.

In model-driven engineering , the model of computation explains how the behaviour of the whole system is the result of the behaviour of each of its components.

Model-driven engineering (MDE) is a software development methodology that focuses on creating and exploiting domain models, which are conceptual models of all the topics related to a specific problem. Hence, it highlights and aims at abstract representations of the knowledge and activities that govern a particular application domain, rather than the computing concepts.

A key point which is often overlooked is that published lower bounds for problems are often given for a model of computation that is more restricted than the set of operations that one could use in practice and therefore there may be algorithms that are faster than what would naïvely be thought possible. [1]


There are many models of computation, differing in the set of admissible operations and their computations cost. They fall into the following broad categories: abstract machine and models equivalent to it (e.g. lambda calculus is equivalent to the Turing machine), used in proofs of computability and upper bounds on computational complexity of algorithms, and decision tree models, used in proofs of lower bounds on computational complexity of algorithmic problems.

See also

Related Research Articles

In computability theory, the Church–Turing thesis is a hypothesis about the nature of computable functions. It states that a function on the natural numbers is computable by a human being following an algorithm, ignoring resource limitations, if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term effectively calculable to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of computability:

Theory of computation subfield of computer science

In theoretical computer science and mathematics, the theory of computation is the branch that deals with how efficiently problems can be solved on a model of computation, using an algorithm. The field is divided into three major branches: automata theory and languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".

Turing machine Rule based abstract computation model

A Turing machine is a mathematical model of computation that defines an abstract machine, which manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, given any computer algorithm, a Turing machine capable of simulating that algorithm's logic can be constructed.

In computability theory, a system of data-manipulation rules is said to be Turing complete or computationally universal if it can be used to simulate any Turing machine. This means that this system is able to recognize or decide other data-manipulation rule sets. This Turing completeness is used as a way to express the power of such data-manipulation rule set. The expression power of these grammars is captured in the Chomsky hierarchy. Virtually all programming languages today are Turing Complete. The concept is named after English mathematician and computer scientist Alan Turing.

An abstract machine, also called an abstract computer, is a theoretical model of a computer hardware or software system used in automata theory. Abstraction of computing processes is used in both the computer science and computer engineering disciplines and usually assumes a discrete time paradigm.

Computer science is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. One well known subject classification system for computer science is the ACM Computing Classification System devised by the Association for Computing Machinery.

Ray Solomonoff's theory of universal inductive inference is a theory of prediction based on logical observations, such as predicting the next symbol based upon a given series of symbols. The only assumption that the theory makes is that the environment follows some unknown but computable probability distribution. It is a mathematical formalization of Occam's razor and the Principle of Multiple Explanations.

Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem.

In computational complexity theory, a complexity class is a set of problems of related resource-based complexity. A typical complexity class has a definition of the form:

In mathematical logic and theoretical computer science a register machine is a generic class of abstract machines used in a manner similar to a Turing machine. All the models are Turing equivalent.

In computer science, the process calculi are a diverse family of related approaches for formally modelling concurrent systems. Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes. They also provide algebraic laws that allow process descriptions to be manipulated and analyzed, and permit formal reasoning about equivalences between processes. Leading examples of process calculi include CSP, CCS, ACP, and LOTOS. More recent additions to the family include the π-calculus, the ambient calculus, PEPA, the fusion calculus and the join-calculus.

Concurrency (computer science)

In computer science, concurrency refers to the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the final outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability property of a program, algorithm, or problem into order-independent or partially-ordered components or units.

Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithm, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the μ-recursive functions.

Programming language theory branch of computer science that deals with the design, implementation, analysis, characterization, and classification of programming languages and their individual features

Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of programming languages and their individual features. It falls within the discipline of computer science, both depending on and affecting mathematics, software engineering, linguistics and even cognitive science. It is a well-recognized branch of computer science, and an active research area, with results published in numerous journals dedicated to PLT, as well as in general computer science and engineering publications.

A Turing machine is a hypothetical computing device, first conceived by Alan Turing in 1936. Turing machines manipulate symbols on a potentially infinite strip of tape according to a finite table of rules, and they provide the theoretical underpinnings for the notion of a computer algorithm.

Algorithm characterizations are attempts to formalize the word algorithm. Algorithm does not have a generally accepted formal definition. Researchers are actively working on this problem. This article will present some of the "characterizations" of the notion of "algorithm" in more detail.


  1. Examples of the price of abstraction?,

Further reading