Hardware security is a discipline originated from the cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity, measures to ensure that the supply chain that built the product is secure among other things. [1] [2] [3] [4]
A hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.
Some providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software. [5]
Hardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of electronic system, particularly in the context of integrated circuit. [1] [3]
A physical unclonable function (PUF) [6] [7] is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect it is the hardware analog of a one-way function. The name "physical unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high security requirements.
Many attacks on sensitive data and resources reported by organizations occur from within the organization itself. [8]
Computer security is the protection of computer software, systems and networks from threats that can lead to unauthorized information disclosure, theft or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide.
A field-programmable gate array (FPGA) is a type of configurable integrated circuit that can be repeatedly programmed after manufacturing. FPGAs are a subset of logic devices referred to as programmable logic devices (PLDs). They consist of an array of programmable logic blocks with a connecting grid, that can be configured "in the field" to interconnect with other logic blocks to perform various digital functions. FPGAs are often used in limited (low) quantity production of custom-made products, and in research and development, where the higher cost of individual FPGAs is not as important, and where creating and manufacturing a custom circuit wouldn't be feasible. Other applications for FPGAs include the telecommunications, automotive, aerospace, and industrial sectors, which benefit from their flexibility, high signal processing speed, and parallel processing abilities.
A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.
A rootkit is a collection of computer software, typically malicious, designed to enable access to a computer or an area of its software that is not otherwise allowed and often masks its existence or the existence of other software. The term rootkit is a compound of "root" and the word "kit". The term "rootkit" has negative connotations through its association with malware.
A backdoor is a typically covert method of bypassing normal authentication or encryption in a computer, product, embedded device, or its embodiment. Backdoors are most often used for securing remote access to a computer, or obtaining access to plaintext in cryptosystems. From there it may be used to gain access to privileged information like passwords, corrupt or delete data on hard drives, or transfer information within autoschediastic networks.
Data security means protecting digital data, such as those in a database, from destructive forces and from the unwanted actions of unauthorized users, such as a cyberattack or a data breach.
Trusted Platform Module (TPM) is an international standard for a secure cryptoprocessor, a dedicated microcontroller designed to secure hardware through integrated cryptographic keys. The term can also refer to a chip conforming to the standard ISO/IEC 11889. Common uses are to verify platform integrity, and to store disk encryption keys.
A physical unclonable function, or PUF, is a physical object whose operation cannot be reproduced ("cloned") in physical way, that for a given input and conditions (challenge), provides a physically defined "digital fingerprint" output (response). that serves as a unique identifier, most often for a semiconductor device such as a microprocessor. PUFs are often based on unique physical variations occurring naturally during semiconductor manufacturing. A PUF is a physical entity embodied in a physical structure. PUFs are implemented in integrated circuits, including FPGAs, and can be used in applications with high-security requirements, more specifically cryptography, Internet of Things (IOT) devices and privacy protection.
Virgil Dorin Gligor is a Romanian-American professor of electrical and computer engineering who specializes in the research of network security and applied cryptography.
A Hardware Trojan (HT) is a malicious modification of the circuitry of an integrated circuit. A hardware Trojan is completely characterized by its physical representation and its behavior. The payload of an HT is the entire activity that the Trojan executes when it is triggered. In general, Trojans try to bypass or disable the security fence of a system: for example, leaking confidential information by radio emission. HTs also could disable, damage or destroy the entire chip or components of it.
Mobile security, or mobile device security, is the protection of smartphones, tablets, and laptops from threats associated with wireless computing. It has become increasingly important in mobile computing. The security of personal and business information now stored on smartphones is of particular concern.
Quantum readout is a method to verify the authenticity of an object. The method is secure provided that the object cannot be copied or physically emulated.
A trusted execution environment (TEE) is a secure area of a main processor. It helps the code and data loaded inside it be protected with respect to confidentiality and integrity. Data confidentiality prevents unauthorized entities from outside the TEE from reading data, while code integrity prevents code in the TEE from being replaced or modified by unauthorized entities, which may also be the computer owner itself as in certain DRM schemes described in Intel SGX.
Physical unclonable function (PUF), sometimes also called physically unclonable function, is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict.
Computation offloading is the transfer of resource intensive computational tasks to a separate processor, such as a hardware accelerator, or an external platform, such as a cluster, grid, or a cloud. Offloading to a coprocessor can be used to accelerate applications including: image rendering and mathematical calculations. Offloading computing to an external platform over a network can provide computing power and overcome hardware limitations of a device, such as limited computational power, storage, and energy.
Hardware backdoors are backdoors in hardware, such as code inside hardware or firmware of computer chips. The backdoors may be directly implemented as hardware Trojans in the integrated circuit.
This is a list of cybersecurity information technology. Cybersecurity is security as it is applied to information technology. This includes all technology that stores, manipulates, or moves data, such as computers, data networks, and all devices connected to or included in networks, such as routers and switches. All information technology devices and facilities need to be secured against intrusion, unauthorized use, and vandalism. Additionally, the users of information technology should be protected from theft of assets, extortion, identity theft, loss of privacy and confidentiality of personal information, malicious mischief, damage to equipment, business process compromise, and the general activity of cybercriminals. The public should be protected against acts of cyberterrorism, such as the compromise or loss of the electric power grid.
In computing, defense strategy is a concept and practice used by computer designers, users, and IT personnel to reduce computer security risks.
Confidential computing is a security and privacy-enhancing computational technique focused on protecting data in use. Confidential computing can be used in conjunction with storage and network encryption, which protect data at rest and data in transit respectively. It is designed to address software, protocol, cryptographic, and basic physical and supply-chain attacks, although some critics have demonstrated architectural and side-channel attacks effective against the technology.
Srini Devadas is an Indian-American computer scientist at the Massachusetts Institute of Technology's Computer Science and Artificial Intelligence Laboratory (CSAIL) who conducts research on computer security, computer architectures, and applied cryptography.