Programming language theory

Last updated
The lowercase Greek letter l (lambda) is an unofficial symbol of the field of programming-language theory.
This usage derives from the lambda calculus, a model of computation introduced by Alonzo Church in the 1930s and widely used by programming-language researchers. It graces the cover of the classic text Structure and Interpretation of Computer Programs, and the title of the so-called Lambda Papers of 1975 to 1980, written by Gerald Jay Sussman and Guy Steele, the developers of the Scheme programming language. Lambda lc.svg
The lowercase Greek letter λ (lambda) is an unofficial symbol of the field of programming-language theory. This usage derives from the lambda calculus, a model of computation introduced by Alonzo Church in the 1930s and widely used by programming-language researchers. It graces the cover of the classic text Structure and Interpretation of Computer Programs , and the title of the so-called Lambda Papers of 1975 to 1980, written by Gerald Jay Sussman and Guy Steele, the developers of the Scheme programming language.

Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including mathematics, software engineering, and linguistics. There are a number of academic conferences and journals in the area.

Contents

History

In some ways, the history of programming language theory predates even the development of programming languages themselves. The lambda calculus, developed by Alonzo Church and Stephen Cole Kleene in the 1930s, is considered by some to be the world's first programming language, even though it was intended to model computation rather than being a means for programmers to describe algorithms to a computer system. Many modern functional programming languages have been described as providing a "thin veneer" over the lambda calculus, [2] and many are easily described in terms of it.

The first programming language to be invented was Plankalkül, which was designed by Konrad Zuse in the 1940s, but not publicly known until 1972 (and not implemented until 1998). The first widely known and successful high-level programming language was Fortran, developed from 1954 to 1957 by a team of IBM researchers led by John Backus. The success of FORTRAN led to the formation of a committee of scientists to develop a "universal" computer language; the result of their effort was ALGOL 58. Separately, John McCarthy of MIT developed Lisp, the first language with origins in academia to be successful. With the success of these initial efforts, programming languages became an active topic of research in the 1960s and beyond.

Timeline

Some other key events in the history of programming language theory since then:

1950s
1960s
1970s
1980s
1990s

There are several fields of study that either lie within programming language theory, or which have a profound influence on it; many of these have considerable overlap. In addition, PLT makes use of many other branches of mathematics, including computability theory, category theory, and set theory.

Formal semantics

Formal semantics is the formal specification of the behaviour of computer programs and programming languages. Three common approaches to describe the semantics or "meaning" of a computer program are denotational semantics, operational semantics and axiomatic semantics.

Type theory

Type theory is the study of type systems; which are "a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute". [4] Many programming languages are distinguished by the characteristics of their type systems.

Program analysis and transformation

Program analysis is the general problem of examining a program and determining key characteristics (such as the absence of classes of program errors). Program transformation is the process of transforming a program in one form (language) to another form.

Comparative programming language analysis

Comparative programming language analysis seeks to classify programming languages into different types based on their characteristics; broad categories of programming languages are often known as programming paradigms.

Generic and metaprogramming

Metaprogramming is the generation of higher-order programs which, when executed, produce programs (possibly in a different language, or in a subset of the original language) as a result.

Domain-specific languages

Domain-specific languages are languages constructed to efficiently solve problems of a particular part of domain.

Compiler construction

Compiler theory is the theory of writing compilers (or more generally, translators); programs that translate a program written in one language into another form. The actions of a compiler are traditionally broken up into syntax analysis (scanning and parsing), semantic analysis (determining what a program should do), optimization (improving the performance of a program as indicated by some metric; typically execution speed) and code generation (generation and output of an equivalent program in some target language; often the instruction set of a CPU).

Run-time systems

Run-time systems refer to the development of programming language runtime environments and their components, including virtual machines, garbage collection, and foreign function interfaces.

Journals, publications, and conferences

Conferences are the primary venue for presenting research in programming languages. The most well known conferences include the Symposium on Principles of Programming Languages (POPL), Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object Oriented Programming, Systems, Languages and Applications (OOPSLA) and the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

Notable journals that publish PLT research include the ACM Transactions on Programming Languages and Systems (TOPLAS), Journal of Functional Programming (JFP), Journal of Functional and Logic Programming , and Higher-Order and Symbolic Computation .

See also

Related Research Articles

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics.

<span class="mw-page-title-main">Scheme (programming language)</span> Dialect of Lisp

Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT Computer Science and Artificial Intelligence Laboratory and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms. It was also one of the first programming languages to support first-class continuations. It had a significant influence on the effort that led to the development of Common Lisp.

In computer science, denotational semantics is an approach of formalizing the meanings of programming languages by constructing mathematical objects that describe the meanings of expressions from the languages. Other approaches providing formal semantics of programming languages include axiomatic semantics and operational semantics.

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs.

Operational semantics is a category of formal programming language semantics in which certain desired properties of a program, such as correctness, safety or security, are verified by constructing proofs from logical statements about its execution and procedures, rather than by attaching mathematical meanings to its terms. Operational semantics are classified in two categories: structural operational semantics formally describe how the individual steps of a computation take place in a computer-based system; by opposition natural semantics describe how the overall results of the executions are obtained. Other approaches to providing a formal semantics of programming languages include axiomatic semantics and denotational semantics.

In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax. It is closely related to, and often crosses over with, the semantics of mathematical proofs.

The actor model in computer science is a mathematical model of concurrent computation that treats an actor as the basic building block of concurrent computation. In response to a message it receives, an actor can: make local decisions, create more actors, send more messages, and determine how to respond to the next message received. Actors may modify their own private state, but can only affect each other indirectly through messaging.

The simply typed lambda calculus, a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus.

Quantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment. Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor.

In computer science, the Actor model and process calculi are two closely related approaches to the modelling of concurrent digital computation. See Actor model and process calculi history.

In computer science, the Actor model, first published in 1973, is a mathematical model of concurrent computation.

In computer science, unbounded nondeterminism or unbounded indeterminacy is a property of concurrency by which the amount of delay in servicing a request can become unbounded as a result of arbitration of contention for shared resources while still guaranteeing that the request will eventually be serviced. Unbounded nondeterminism became an important issue in the development of the denotational semantics of concurrency, and later became part of research into the theoretical concept of hypercomputation.

<span class="mw-page-title-main">Matthias Felleisen</span> German-American computer science professor and author

Matthias Felleisen is a German-American computer science professor and author. He grew up in Germany and immigrated to the US in his twenties. He received his PhD from Indiana University under the direction of Daniel P. Friedman.

The actor model and process calculi share an interesting history and co-evolution.

The categorical abstract machine (CAM) is a model of computation for programs that preserves the abilities of applicative, functional, or compositional style. It is based on the techniques of applicative computing.

<span class="mw-page-title-main">Carl Hewitt</span> American computer scientist; Planner programming languagedesigner (1944-2022)

Carl Eddie Hewitt was an American computer scientist who designed the Planner programming language for automated planning and the actor model of concurrent computation, which have been influential in the development of logic, functional and object-oriented programming. Planner was the first programming language based on procedural plans invoked using pattern-directed invocation from assertions and goals. The actor model influenced the development of the Scheme programming language, the π-calculus, and served as an inspiration for several other programming languages.

The history of the programming language Scheme begins with the development of earlier members of the Lisp family of languages during the second half of the twentieth century. During the design and development period of Scheme, language designers Guy L. Steele and Gerald Jay Sussman released an influential series of Massachusetts Institute of Technology (MIT) AI Memos known as the Lambda Papers (1975–1980). This resulted in the growth of popularity in the language and the era of standardization from 1990 onward. Much of the history of Scheme has been documented by the developers themselves.

References

  1. Abelson, Harold (1996). Structure and Interpretation of Computer Programs. Gerald Jay Sussman, Julie Sussman (2nd ed.). Cambridge, Mass.: MIT Press. ISBN   0-262-01153-0. OCLC   34576857.
  2. "Models Of Computation". wiki.c2.com. December 3, 2014. Archived from the original on Nov 30, 2020.
  3. C. Böhm and W. Gross (1996). Introduction to the CUCH. In E. R. Caianiello (ed.), Automata Theory, p. 35-64/
  4. Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, Massachusetts, USA.

Further reading