ISWIM

Last updated
ISWIM
Paradigm Imperative, functional
Designed by Peter Landin
First appeared1966;58 years ago (1966)
Influenced by
ALGOL 60, Lisp
Influenced
SASL, Miranda, ML, Haskell, Clean, Lucid

ISWIM (If You See What I Mean) is an abstract computer programming language (or a family of languages) devised by Peter Landin and first described in his article "The Next 700 Programming Languages", published in the Communications of the ACM in 1966. [1]

Contents

Although not implemented, it has proved very influential in the development of programming languages, especially functional programming languages such as SASL, Miranda, ML, Haskell and their successors, and dataflow programming languages like Lucid.

Design

ISWIM is an imperative programming language with a functional core, consisting of a syntactic sugaring of lambda calculus to which are added mutable variables and assignment and a powerful control mechanism: the program point operator. Being based on lambda calculus, ISWIM has higher-order functions and lexically scoped variables.

The operational semantics of ISWIM are defined using Landin's SECD machine and use call-by-value, that is eager evaluation. [2] A goal of ISWIM was to look more like mathematical notation, so Landin abandoned ALGOL's semicolons between statements and begin ... end blocks and replaced them with the off-side rule and scoping based on indentation.

A notationally distinctive feature of ISWIM is its use of where clauses. An ISWIM program is a single expression qualified by where clauses (auxiliary definitions including equations among variables), conditional expressions and function definitions. Along with CPL, ISWIM was one of the first programming languages to use where clauses. [3]

A notable semantic feature was the ability to define new data types, as a (possibly recursive) sum of products. This was done using a somewhat verbose natural language style description, but apart from notation amounts exactly to the algebraic data types found in modern functional languages. [4] ISWIM variables did not have explicit type declarations and it seems likely (although not explicitly stated in the 1966 paper) that Landin intended the language to be dynamically typed, like LISP and unlike ALGOL; but it is also possible that he intended to develop some form of type inference.

Implementations and derivatives

No direct implementation of ISWIM was completed but Art Evan's language PAL , [5] and John C. Reynolds' language Gedanken, [6] captured most of Landin's concepts, including powerful transfer-of-control operations. Both of these were typed dynamically. Robin Milner's ML may be considered equivalent to ISWIM without the J operator and with type inference.

Another line of descent from ISWIM is to strip out the imperative features (assignment and the J operator) leaving a purely functional language. [7] It then becomes possible to switch to lazy evaluation. This path led to programming languages SASL, Kent Recursive Calculator (KRC), Hope, Miranda, Haskell, and Clean.

Related Research Articles

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

In programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed and which also avoids repeated evaluations.

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940.

<span class="mw-page-title-main">Scheme (programming language)</span> Dialect of Lisp

Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT Computer Science and Artificial Intelligence Laboratory and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms. It was also one of the first programming languages to support first-class continuations. It had a significant influence on the effort that led to the development of Common Lisp.

In computer science, syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express. It makes the language "sweeter" for human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer. Syntactic sugar is usually a shorthand for a common operation that could also be expressed in an alternate, more verbose, form: The programmer has a choice of whether to use the shorter form or the longer form, but will usually use the shorter form since it is shorter and easier to type and read.

In combinatory logic for computer science, a fixed-point combinator, is a higher-order function that returns some fixed point of its argument function, if one exists.

Curry is a declarative programming language, an implementation of the functional logic programming paradigm, and based on the Haskell language. It merges elements of functional and logic programming, including constraint programming integration.

<span class="mw-page-title-main">Peter Landin</span> British computer scientist (1930–2009)

Peter John Landin was a British computer scientist. He was one of the first to realise that the lambda calculus could be used to model a programming language, an insight that is essential to the development of both functional programming and denotational semantics.

David A. Turner was a British computer scientist. He is best known for designing and implementing three programming languages, including the first for functional programming based on lazy evaluation, combinator graph reduction, and polymorphic types: SASL (1972), Kent Recursive Calculator (KRC) (1981), and the commercially supported Miranda (1985).

In computer science, a programming language is said to have first-class functions if it treats functions as first-class citizens. This means the language supports passing functions as arguments to other functions, returning them as the values from other functions, and assigning them to variables or storing them in data structures. Some programming language theorists require support for anonymous functions as well. In languages with first-class functions, the names of functions do not have any special status; they are treated like ordinary variables with a function type. The term was coined by Christopher Strachey in the context of "functions as first-class citizens" in the mid-1960s.

<span class="mw-page-title-main">Programming language theory</span> Branch of computer science

Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including mathematics, software engineering, and linguistics. There are a number of academic conferences and journals in the area.

In computing, a meta-circular evaluator (MCE) or meta-circular interpreter (MCI) is an interpreter which defines each feature of the interpreted language using a similar facility of the interpreter's host language. For example, interpreting a lambda application may be implemented using function application. Meta-circular evaluation is most prominent in the context of Lisp. A self-interpreter is a meta-circular interpreter where the interpreted language is nearly identical to the host language; the two terms are often used synonymously.

In functional programming, a generalized algebraic data type is a generalization of a parametric algebraic data type (ADT).

In computer science, Peter Landin's J operator is a programming construct that post-composes a lambda expression with the continuation to the current lambda-context. The resulting “function” is first-class and can be passed on to subsequent functions, where if applied it will return its result to the continuation of the function in which it was created.

In the area of mathematical logic and computer science known as type theory, a type constructor is a feature of a typed formal language that builds new types from old ones. Basic types are considered to be built using nullary type constructors. Some type constructors take another type as an argument, e.g., the constructors for product types, function types, power types and list types. New types can be defined by recursively composing type constructors.

In computer science, polymorphic recursion refers to a recursive parametrically polymorphic function where the type parameter changes with each recursive invocation made, instead of staying constant. Type inference for polymorphic recursion is equivalent to semi-unification and therefore undecidable and requires the use of a semi-algorithm or programmer-supplied type annotations.

This article describes the features in the programming language Haskell.

A CEK Machine is an abstract machine invented by Matthias Felleisen and Daniel P. Friedman that implements left-to-right call by value. It is generally implemented as an interpreter for functional programming languages, but can also be used to implement simple imperative programming languages. A state in a CEK machine includes a control statement, environment and continuation. The control statement is the term being evaluated at that moment, the environment is (usually) a map from variable names to values, and the continuation stores another state, or a special halt case. It is a simplified form of another abstract machine called the SECD machine.

References

  1. Landin, P. J. (March 1966). "The Next 700 Programming Languages" (PDF). Communications of the ACM. 9 (3). Association for Computing Machinery: 157–165. doi:10.1145/365230.365257. S2CID   13409665.
  2. Plotkin, Gordon (1975). Call-by-Name, Call-by Value and the Lambda Calculus (PDF) (Report).
  3. This article is based on material taken from ISWIM at the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.
  4. Turner, D. A. (2013), Some History of Functional Programming Languages, Lecture Notes in Computer Science, vol. 7829, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–20, doi:10.1007/978-3-642-40447-4_1, ISBN   978-3-642-40446-7 , retrieved 2024-01-28, The ISWIM paper also has the first appearance of algebraic type definitions used to define structures. This is done in words, but the sum-of-products idea is clearly there
  5. Evans, Art (1968). "PAL: a language designed for teaching programming linguistics". Proceedings ACM National Conference. ACM National Conference. Association for Computing Machinery.
  6. Reynolds, John C. (September 1969). GEDANKEN: a simple typeless language which permits functional data structures and co-routines (Report). Argonne National Laboratory.
  7. Ivanović, Mirjana; Budimac, Zoran (April 1993). "A definition of an ISWIM-like language via Scheme". ACM SIGPLAN Notices. 28 (4): 29–38. doi: 10.1145/152739.152743 . S2CID   14379260.