Image compression

Last updated

Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior results compared with generic data compression methods which are used for other digital data. [1]

In signal processing, data compression, source coding, or bit-rate reduction involves encoding information using fewer bits than the original representation. Compression can be either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information.

A digital image is a numeric representation, normally binary, of a two-dimensional image. Depending on whether the image resolution is fixed, it may be of vector or raster type. By itself, the term "digital image" usually refers to raster images or bitmapped images.

Computer data storage Romerolawrence0278

Computer data storage, often called storage or memory, is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.

Contents


Comparison of JPEG images saved by Adobe Photoshop at different quality levels and with or without "save for web" Quality comparison jpg vs saveforweb.jpg
Comparison of JPEG images saved by Adobe Photoshop at different quality levels and with or without "save for web"

Lossy and lossless image compression

Image compression may be lossy or lossless. Lossless compression is preferred for archival purposes and often for medical imaging, technical drawings, clip art, or comics. Lossy compression methods, especially when used at low bit rates, introduce compression artifacts. Lossy methods are especially suitable for natural images such as photographs in applications where minor (sometimes imperceptible) loss of fidelity is acceptable to achieve a substantial reduction in bit rate. Lossy compression that produces negligible differences may be called visually lossless.

Lossy compression data compression approach that reduces data size while discarding or channing some of it

In information technology, lossy compression or irreversible compression is the class of data encoding methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat to the right show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than through lossless techniques.

Lossless compression is a class of data compression algorithms that allows the original data to be perfectly reconstructed from the compressed data. By contrast, lossy compression permits reconstruction only of an approximation of the original data, though usually with improved compression rates.

Clip art graphic illustrations created for reuse by others

Clip art, in the graphic arts, is pre-made images used to illustrate any medium. Today, clip art is used extensively. Clip art comes in many forms, both electronic and printed. However, most clip art today is created, distributed, and used in an electronic form. Since its inception, clip art has evolved to include a wide variety of content, file formats, illustration styles, and licensing restrictions. Clip art is generally composed exclusively of illustrations, and does not include stock photography.

Methods for lossy compression:

Transform coding is a type of data compression for "natural" data like audio signals or photographic images. The transformation is typically lossless on its own but is used to enable better quantization, which then results in a lower quality copy of the original input.

N. Ahmed Professor Emeritus of Electrical and Computer and Engineering at University of New Mexico (UNM)

Nasir Ahmed is an Indian-American computer scientist and electrical engineer. He is Professor Emeritus of Electrical and Computer and Engineering at University of New Mexico (UNM). He is best known for the development of the discrete cosine transform (DCT), which is the most widely used data compression transformation in lossy compression multimedia formats.

K. R. Rao Professor at UTA

K. R. Rao is an Indian-American electrical engineer. He is a professor of Electrical Engineering at the University of Texas at Arlington . He is credited with the co-invention of discrete cosine transform (DCT), along with Nasir Ahmed and T. Natarajan due to their landmark publication, N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine Transform", IEEE Transactions on Computers, 90–93, Jan 1974.

Methods for lossless compression:

Run-length encoding (RLE) is a very simple form of lossless data compression in which runs of data are stored as a single data value and count, rather than as the original run. This is most useful on data that contains many such runs. Consider, for example, simple graphic images such as icons, line drawings, Conway’s Game of Life, and animations. It is not useful with files that don't have many runs as it could greatly increase the file size.

PCX, standing for PiCture eXchange, is an image file format developed by the now-defunct ZSoft Corporation of Marietta, Georgia, United States. It was the native file format for PC Paintbrush and became one of the first widely accepted DOS imaging standards, although it has since been succeeded by more sophisticated image formats, such as BMP, JPEG, and PNG. PCX files commonly stored palette-indexed images ranging from 2 or 4 colors to 16 and 256 colors, although the format has been extended to record true-color (24-bit) images as well.

The BMP file format, also known as bitmap image file or device independent bitmap (DIB) file format or simply a bitmap, is a raster graphics image file format used to store bitmap digital images, independently of the display device, especially on Microsoft Windows and OS/2 operating systems.

Other properties

The best image quality at a given compression rate (or bit rate) is the main goal of image compression, however, there are other important properties of image compression schemes:

Scalability generally refers to a quality reduction achieved by manipulation of the bitstream or file (without decompression and re-compression). Other names for scalability are progressive coding or embedded bitstreams. Despite its contrary nature, scalability also may be found in lossless codecs, usually in form of coarse-to-fine pixel scans. Scalability is especially useful for previewing images while downloading them (e.g., in a web browser) or for providing variable quality access to e.g., databases. There are several types of scalability:

Region of interest coding. Certain parts of the image are encoded with higher quality than others. This may be combined with scalability (encode these parts first, others later).

Meta information. Compressed data may contain information about the image which may be used to categorize, search, or browse images. Such information may include color and texture statistics, small preview images, and author or copyright information.

Processing power. Compression algorithms require different amounts of processing power to encode and decode. Some high compression algorithms require high processing power.

The quality of a compression method often is measured by the peak signal-to-noise ratio. It measures the amount of noise introduced through a lossy compression of the image, however, the subjective judgment of the viewer also is regarded as an important measure, perhaps, being the most important measure.

Notes and references

  1. "Image Data Compression".
  2. Nasir Ahmed, T. Natarajan and K. R. Rao, "Discrete Cosine Transform," IEEE Trans. Computers, 90–93, Jan. 1974.
  3. Burt, P.; Adelson, E. (1 April 1983). "The Laplacian Pyramid as a Compact Image Code". IEEE Transactions on Communications. 31 (4): 532–540. CiteSeerX   10.1.1.54.299 . doi:10.1109/TCOM.1983.1095851.
  4. Shao, Dan; Kropatsch, Walter G. (February 3–5, 2010). Špaček, Libor; Franc, Vojtěch (eds.). "Irregular Laplacian Graph Pyramid" (PDF). Computer Vision Winter Workshop 2010. Nové Hrady, Czech Republic: Czech Pattern Recognition Society.

Related Research Articles

A video codec is an electronic circuit or software that compresses or decompresses digital video. It converts uncompressed video to a compressed format or vice versa. In the context of video compression, "codec" is a concatenation of "encoder" and "decoder"—a device that only compresses is typically called an encoder, and one that only decompresses is a decoder.

JPEG 2000 image compression standard and coding system

JPEG 2000 (JP2) is an image compression standard and coding system. It was created by the Joint Photographic Experts Group committee in 2000 with the intention of superseding their original discrete cosine transform-based JPEG standard with a newly designed, wavelet-based method. The standardized filename extension is .jp2 for ISO/IEC 15444-1 conforming files and .jpx for the extended part-2 specifications, published as ISO/IEC 15444-2. The registered MIME types are defined in RFC 3745. For ISO/IEC 15444-1 it is image/jp2.

Compression artifact noticeable distortion of media caused by the application of lossy data compression

A compression artifact is a noticeable distortion of media caused by the application of lossy compression.

ICER is a wavelet-based image compression file format used by the NASA Mars Rovers. ICER has both lossy and lossless compression modes.

H.261 is an ITU-T video compression standard, first ratified in November 1988. It is the first member of the H.26x family of video coding standards in the domain of the ITU-T Video Coding Experts Group, and was developed with a number of companies, including Hitachi, PictureTel, NTT, BT and Toshiba. It was the first video coding standard that was useful in practical terms.

Image file formats are standardized means of organizing and storing digital images. Image files are composed of digital data in one of these formats that can be rasterized for use on a computer display or printer. An image file format may store data in uncompressed, compressed, or vector formats. Once rasterized, an image becomes a grid of pixels, each of which has a number of bits to designate its color equal to the color depth of the device displaying it.

Lossless JPEG is a 1993 addition to JPEG standard by the Joint Photographic Experts Group to enable lossless compression. However, the term may also be used to refer to all lossless compression schemes developed by the group, including JPEG 2000 and JPEG-LS.

JPEG XR is a still-image compression standard and file format for continuous tone photographic images, based on technology originally developed and patented by Microsoft under the name HD Photo. It supports both lossy and lossless compression, and is the preferred image format for Ecma-388 Open XML Paper Specification documents.

CCSDS 122.0 is a CCSDS lossless to lossy image compression standard originally released on November 2005. The encoder consists of two parts—a discrete wavelet transform transform coder followed by a bitplane encoder on the similar lines as Embedded Zerotree Wavelet by Shapiro.

Progressive Graphics File file format

PGF is a wavelet-based bitmapped image format that employs lossless and lossy data compression. PGF was created to improve upon and replace the JPEG format. It was developed at the same time as JPEG 2000 but with a focus on speed over compression ratio.

WebP type of image file format

WebP is an image format employing both lossy and lossless compression. It is currently developed by Google, based on technology acquired with the purchase of On2 Technologies.

A video coding format is a content representation format for storage or transmission of digital video content. Examples of video coding formats include H.262, MPEG-4 Part 2, H.264, HEVC (H.265), Theora, RealVideo RV40, VP9, and AV1. A specific software or hardware implementation capable of video compression and/or decompression to/from a specific video coding format is called a video codec; an example of a video codec is Xvid, which is one of several different codecs which implements encoding and decoding videos in the MPEG-4 Part 2 video coding format in software.

JPEG XT is an image compression standard which specifies backward-compatible extensions of the base JPEG standard.