Audio Video Standard

Last updated

Audio Video Coding Standard (AVS) refers to the digital audio and digital video series compression standard formulated by the Audio and Video coding standard workgroup of China. Work began in 2002, and three generations of standards were published. [1]

Contents

The first generation AVS standard includes "Information Technology, Advanced Audio Video Coding, Part 2: Video" (AVS1) and "Information Technology, Advanced Audio Video Coding Part 16: Radio Television Video" (AVS+.) For the second generation, referred to as AVS2, the primary application target was ultra-high-definition television video, supporting the efficient compression of ultra-high-resolution (4K and above), high-dynamic-range videos, and was published as IEEE international standard IEEE 1857.4. An industry alliance was established to develop and promote AVS standards. [2] A patent pool charges a small royalty for terminal products (like TVs,) excluding content providers and operators. [3]

The AVS3 codec was added to DVB's media delivery toolbox. [4]

Organizations

Workgroup

The AVS workgroup was founded in June 2002 to cooperate with Chinese enterprises and scientific research institutions, to formulate and revise common technical standards such as digital audio and digital video's compression, decompression, processing and representation, thus to provide efficient and economic coding/decoding technologies for digital audio and digital video devices and systems, serving the high-resolution digital broadcasting, high-density digital laser storage media, wireless broadband multimedia communication, Internet broadband streaming media, and other applications.

The workgroup is headed by Gao Wen, the academician of Chinese Academy of Engineering, the professor and Ph.D. supervisor of Peking University, and the deputy director of the National Natural Science Fund Committee, consisting of a requirement group, system group, video group, audio group, test group, intellectual property group and other departments. The first setback was when China did not use AVS for its own digital television broadcast system in 2003. [5]

Patent pool

A patent pool which manages and authorizes the patents was founded on September 20, 2004. The committee was the first patent pool management institution in China. An independent corporate association, the Beijing Haidian District Digital Audio and Video Standard Promotion Center, is registered in the Civil Affairs Bureau of Haidian District of Beijing City. [6] for patent technologies included in the standard, as the expert committee and the main business decision-making institution of the promotion center. The royalty for the first generation AVS standard was only one yuan per terminal. The plan was to charge a small amount of royalty only for the terminal, excluding the contents, as well as software services on the Internet. [7]

Alliance

The AVS Industry Alliance, short for Zhongguancun Audio Visual Industry Technology Innovation Alliance, was formed in May 2005 in Beijing by twelve entities, including TCL Group Co., Ltd., Skyworth Group Research Institute, Huawei Technology Co., Ltd., Hisense Group Co., Ltd., Haier Group Co., Ltd., Beijing Haier Guangke Co., Ltd., Inspur Group Co., Ltd., Joint Source Digital Audio Video Technology (Beijing) Co., Ltd., New Pudong District Mobile Communication Association, Sichuan Changhong Co., Ltd., Shanghai SVA (Group) Central Research Institute, Zte Communication Co., Ltd., and Zhongguancun Hi-Tech Industry Association. The organization is also known as AVSA, and it collaborates with "AVS Workgroup" and "AVS Patent Pool Management Committee" as part of the "Three Carriages."

First generation

The first generation AVS standard included Chinese national standard "Information Technology, Advanced Audio Video Coding, Part 2: Video" (AVS1 for short, GB label:GB/T 20090.2-2006) and "Information Technology, Advanced Audio Video Coding Part 16: Radio Television Video" (AVS+ for short, GB label: GB/T 20090.16-2016). A test hosted by the Radio and Television Planning Institute of the State Administration of Radio, Film, and Television (SARFT, later part of the National Radio and Television Administration) shows: if the AVS1 bitrate is half of MPEG-2 standard, the coding quality will reach excellent for both standard definition or high definition; if the bitrate is less than 1/3, it also reaches good-excellent levels. The AVS1 standard video part was promulgated as the Chinese national standard in February 2006. Around this time, AVS was considered for use in the enhanced versatile disc format, [8] although products never reached the market.

During the May 7–11, 2007 meeting of the ITU-T (ITU Telecommunication Standardization Sector), AVS1 was one of the standards available for Internet Protocol television (IPTV) along with MPEG-2, H.264 and VC-1. On June 4, 2013, the AVS1 video part was issued by the Institute of Electrical and Electronics Engineers (IEEE) as standard IEEE1857-2013, AVS+ is not only the radio, film and television industry standard GY/T 257.1-2012 "Advanced Audio Video Coding for Radio and Television, Part 1: Video" issued by the SARFT on July 10, 2012, but also the enhanced version of AVS1. [9]

Second generation

The second-generation AVS standard included the series of Chinese national standard "Information Technology, Efficient Multi Media Coding" (AVS2). AVS2 mainly faces the transmission of extra HD TV programs, The SARFT issued AVS2 video as the industry standard in May 2016, and as the Chinese national standard on December 30, 2016. AVS2 was published by the Institute of Electrical and Electronics Engineers (IEEE) as standard 1857.4-2018 in August, 2019. [10]

A test showed the coding efficiency of AVS2 more than doubled that of AVS+, and the compression rate surpassed the international standard HEVC (H.265). Compared with the first generation AVS standard, the second can save half transmission bandwidth.

Features

AVS2 adopts a hybrid-coding framework, and the whole coding process includes modules such as intra-frame prediction, inter-frame prediction, transformation, quantization, inverse quantization and inverse transformation, loop filter and entropy coding. It owns technical features as followings: [11]

Implementations

uAVS3

uAVS3 is an open source and cross-platform AVS3 encoder and decoder. The decoder (uAVS3d) and encoder (uAVS3e) support the AVS3-Phase2 baseline profile. uAVS3d can be compiled for Windows, Linux, macOS, iOS and Android, [12] whilst uAVS3e can only be compiled for Windows and Linux. [13] uAVS3d and uAVS3e are released under the terms of the BSD 3-clause [12] and BSD 4-clause [13] licenses respectively.

FFmpeg v6 can make use of the uAVS3d library for AVS3-P2/IEEE1857.10 video decoding. [14]

uAVS2

An encoder called uAVS2 was developed by the digital media research center of Peking University Shenzhen Graduate School. Subsequently, AVS2 Ultra HD real-time video encoder and mobile HD encoder were announced. [15] [16]

OpenAVS2

OpenAVS2 is a set of audio and video coding, transcoding and decoding software based on the AVS2 standard. [17]

xAVS2 & dAVS2

xAVS2 and dAVS2 are open-source encoder and decoder published by Peking University Video Coding Laboratory (PKU-VCL) based on AVS2-P2/IEEE 1857.4 video coding standard, which is offered under either version 2 of the GNU General Public License (GPL) or a commercial license.

FFmpeg Version 6 can make use of the dAVS2 library for AVS2-P2/IEEE1857.4 video decoding [18] [19] the xAVS2 library for AVS2-P2/IEEE1857.4 video encoding. [20] [21]

libdavs2 and libxavs2 are under the GNU Public License Version 2 or later.

See also

Related Research Articles

In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder.

H.263 is a video compression standard originally designed as a low-bit-rate compressed format for videotelephony. It was standardized by the ITU-T Video Coding Experts Group (VCEG) in a project ending in 1995/1996. It is a member of the H.26x family of video coding standards in the domain of the ITU-T.

MPEG-1 is a standard for lossy compression of video and audio. It is designed to compress VHS-quality raw digital video and CD audio down to about 1.5 Mbit/s without excessive quality loss, making video CDs, digital cable/satellite TV and digital audio broadcasting (DAB) practical.

<span class="mw-page-title-main">Motion compensation</span> Video compression technique, used to efficiently predict and generate video frames

Motion compensation in computing is an algorithmic technique used to predict a frame in a video given the previous and/or future frames by accounting for motion of the camera and/or objects in the video. It is employed in the encoding of video data for video compression, for example in the generation of MPEG-2 files. Motion compensation describes a picture in terms of the transformation of a reference picture to the current picture. The reference picture may be previous in time or even from the future. When images can be accurately synthesized from previously transmitted/stored images, the compression efficiency can be improved.

<span class="mw-page-title-main">Compression artifact</span> Distortion of media caused by lossy data compression

A compression artifact is a noticeable distortion of media caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired disk space or transmitted (streamed) within the available bandwidth. If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts. The compression algorithm may not be intelligent enough to discriminate between distortions of little subjective importance and those objectionable to the user.

<span class="mw-page-title-main">FFmpeg</span> Multimedia framework

FFmpeg is a free and open-source software project consisting of a suite of libraries and programs for handling video, audio, and other multimedia files and streams. At its core is the command-line ffmpeg tool itself, designed for processing of video and audio files. It is widely used for format transcoding, basic editing, video scaling, video post-production effects and standards compliance.

Advanced Audio Coding (AAC) is an audio coding standard for lossy digital audio compression. Designed to be the successor of the MP3 format, AAC generally achieves higher sound quality than MP3 encoders at the same bit rate.

<span class="mw-page-title-main">Advanced Video Coding</span> Most widely used standard for video compression

Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. It supports a maximum resolution of 8K UHD.

H.261 is an ITU-T video compression standard, first ratified in November 1988. It is the first member of the H.26x family of video coding standards in the domain of the ITU-T Study Group 16 Video Coding Experts Group. It was the first video coding standard that was useful in practical terms.

<span class="mw-page-title-main">Smacker video</span> Digital video file format

Smacker video is a video file format developed by Epic Games Tools, and primarily used for full-motion video in video games. Smacker uses an adaptive 8-bit RGB palette. RAD's format for video at higher color depths is Bink Video. The Smacker format specifies a container format, a video compression format, and an audio compression format. Since its release in 1994, Smacker has been used in over 2300 games. Blizzard used this format for the cinematic videos seen in its games Warcraft II, StarCraft and Diablo I.

An inter frame is a frame in a video compression stream which is expressed in terms of one or more neighboring frames. The "inter" part of the term refers to the use of Inter frame prediction. This kind of prediction tries to take advantage from temporal redundancy between neighboring frames enabling higher compression rates.

H.262 or MPEG-2 Part 2 is a video coding format standardised and jointly maintained by ITU-T Study Group 16 Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG), and developed with the involvement of many companies. It is the second part of the ISO/IEC MPEG-2 standard. The ITU-T Recommendation H.262 and ISO/IEC 13818-2 documents are identical.

JPEG XR is an image compression standard for continuous tone photographic images, based on the HD Photo specifications that Microsoft originally developed and patented. It supports both lossy and lossless compression, and is the preferred image format for Ecma-388 Open XML Paper Specification documents.

The macroblock is a processing unit in image and video compression formats based on linear block transforms, typically the discrete cosine transform (DCT). A macroblock typically consists of 16×16 samples, and is further subdivided into transform blocks, and may be further subdivided into prediction blocks. Formats which are based on macroblocks include JPEG, where they are called MCU blocks, H.261, MPEG-1 Part 2, H.262/MPEG-2 Part 2, H.263, MPEG-4 Part 2, and H.264/MPEG-4 AVC. In H.265/HEVC, the macroblock as a basic processing unit has been replaced by the coding tree unit.

A deblocking filter is a video filter applied to decoded compressed video to improve visual quality and prediction performance by smoothing the sharp edges which can form between macroblocks when block coding techniques are used. The filter aims to improve the appearance of decoded pictures. It is a part of the specification for both the SMPTE VC-1 codec and the ITU H.264 codec.

<span class="mw-page-title-main">VP8</span> Open and royalty-free video coding format released by Google in 2010

VP8 is an open and royalty-free video compression format released by On2 Technologies in 2008.

Multi view Video Coding is a stereoscopic video coding standard for video compression that allows for the efficient encoding of video sequences captured simultaneously from multiple camera angles in a single video stream. It uses the 2D plus Delta method and is an amendment to the H.264 video compression standard, developed jointly by MPEG and VCEG, with contributions from a number of companies, primarily Panasonic and LG Electronics.

High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard designed as part of the MPEG-H project as a successor to the widely used Advanced Video Coding. In comparison to AVC, HEVC offers from 25% to 50% better data compression at the same level of video quality, or substantially improved video quality at the same bit rate. It supports resolutions up to 8192×4320, including 8K UHD, and unlike the primarily 8-bit AVC, HEVC's higher fidelity Main 10 profile has been incorporated into nearly all supporting hardware.

<span class="mw-page-title-main">VP9</span> Open and royalty-free video coding format released by Google in 2013

VP9 is an open and royalty-free video coding format developed by Google.

References

  1. "Youwei Vision launches AVS3 8K video real-time decoder (in Chinese)". Tencent. May 29, 2019.
  2. "Introduction to AVSA". Official website of AVSA. Archived from the original on March 24, 2019. Retrieved September 29, 2017.
  3. "Who will lead the new video coding standard: a performance comparison report of HEVC、AVS2 and AV1". Archived from the original on July 28, 2018. Retrieved September 29, 2017.
  4. "AVS3 codec added to DVB's media delivery toolbox". July 7, 2022. Retrieved September 7, 2022.
  5. Elspeth Thomson, Jon Sigurdson, ed. (2008). China's Science and Technology Sector and the Forces of Globalisation. World Scientific Publishing. pp. 93–95. ISBN   978-981-277-101-8 . Retrieved June 15, 2022.
  6. 跳转提示. www.avs.org.cn.
  7. National Research Council (October 7, 2013). Patent Challenges for Standard-Setting in the Global Economy: Lessons from Information and Communications Technology. National Academies Press. ISBN   978-0-309-29315-0 . Retrieved June 15, 2022.
  8. Liu Baijia (March 6, 2006). "Standard Issue". China Business Weekly. Retrieved June 14, 2022.
  9. Xinhua (August 27, 2012). "China to promote its own audio-video coding standard". The Manilla Times. Retrieved June 15, 2022.
  10. IEEE Standard for Second-Generation IEEE 1857 Video Coding. Institute of Electrical and Electronics Engineers. August 30, 2019. pp. 1–199. doi:10.1109/IEEESTD.2019.8821610. ISBN   978-1-5044-5461-2 . Retrieved June 13, 2022.{{cite book}}: |journal= ignored (help)
  11. "AVS2 special column".
  12. 1 2 uavs3d, UAVS, April 11, 2023, retrieved April 29, 2023
  13. 1 2 uavs3e, UAVS, April 4, 2023, retrieved April 29, 2023
  14. FFmpeg. "1.8 uavs3d" . Retrieved April 6, 2023.
  15. "High definition real-time encoder of AVS2 came out with better performance than x265 the encoder of HEVC/H.265".
  16. "AVS2 Real-time codec——uAVS2". Archived from the original on April 27, 2018. Retrieved September 29, 2017.
  17. "Official website of OpenAVS2". Archived from the original on December 31, 2019.
  18. FFmpeg. "1.7 dAVS2" . Retrieved April 6, 2023.
  19. dAVS2. "dAVS2". GitHub. Retrieved April 6, 2023.{{cite web}}: CS1 maint: numeric names: authors list (link)
  20. FFmpeg. "1.27 xAVS2" . Retrieved April 6, 2023.
  21. dAVS2. "dAVS2". GitHub. Retrieved April 6, 2023.{{cite web}}: CS1 maint: numeric names: authors list (link)