![]() | |
Filename extension | |
---|---|
Internet media type |
|
Developed by | |
Initial release | 14 April 2009 |
Latest release | 06/2019 (ITU-T); 2020 edition (ISO/IEC) June 2019 |
Type of format | Graphics file format |
Contained by | TIFF |
Standard | ITU-T Rec. T.832 (06/2019), ISO/IEC 29199-2:2020 |
Open format? | Yes |
Website | jpeg.org/jpegxr |
JPEG XR [4] (JPEG extended range [5] ) is an image compression standard for continuous tone photographic images, based on the HD Photo (formerly Windows Media Photo) specifications that Microsoft originally developed and patented. [6] It supports both lossy and lossless compression, and is the preferred image format for Ecma-388 Open XML Paper Specification documents.
The format is natively supported by Windows Vista and later as well as Internet Explorer 9, 10 and 11. Third-party support for the format includes Adobe AIR, Affinity Photo, Paint.NET, and Sumatra PDF. [7] [8] [9]
Microsoft first announced Windows Media Photo at WinHEC 2006, [10] and then renamed it to HD Photo in November of that year. In July 2007, the Joint Photographic Experts Group and Microsoft announced HD Photo to be under consideration to become a JPEG standard known as JPEG XR. [11] [12] On 16 March 2009, JPEG XR was given final approval as ITU-T Recommendation T.832 and starting in April 2009, it became available from the ITU-T in "pre-published" form. [1] On 19 June 2009, it passed an ISO/IEC Final Draft International Standard (FDIS) ballot, resulting in final approval as International Standard ISO/IEC 29199-2. [13] [14] The ITU-T updated its publication with a corrigendum approved in December 2009, [1] and ISO/IEC issued a new edition with similar corrections on 30 September 2010. [15]
In 2010, after completion of the image coding specification, the ITU-T and ISO/IEC also published a motion format specification (ITU-T T.833 | ISO/IEC 29199-3), a conformance test set (ITU-T T.834 | ISO/IEC 29199-4), and reference software (ITU-T T.835 | ISO/IEC 29199-5) for JPEG XR. In 2011, they published a technical report describing the workflow architecture for the use of JPEG XR images in applications (ITU-T T.Sup2 | ISO/IEC TR 29199-1).
Since the release of Windows 11, version 24H2 in October 2024, HDR images in JPEG XR can be set as HDR wallpapers. [16] [17]
JPEG XR is an image file format that offers several key improvements over JPEG, including: [18]
One file container format that can be used to store JPEG XR image data is specified in Annex A of the JPEG XR standard. It is a TIFF-like format using a table of Image File Directory (IFD) tags. A JPEG XR file contains image data, optional alpha channel data, metadata, optional XMP metadata stored as RDF/XML, and optional Exif metadata, in IFD tags. The image data is a contiguous self-contained chunk of data. The optional alpha channel, if present, can be compressed as a separate image record, enabling decoding of the image data independently of transparency data in applications which do not support transparency. (Alternatively, JPEG XR also supports an "interleaved" alpha channel format in which the alpha channel data is encoded together with the other image data in a single compressed codestream.)
Being TIFF-based, this format inherits all of the limitations of the TIFF format including the 4 GB file-size limit, which according to the HD Photo specification "will be addressed in a future update". [20]
New work has been started in the JPEG committee to enable the use of JPEG XR image coding within the JPX file storage format – enabling use of the JPIP protocol, which allows interactive browsing of networked images. [13] Additionally, a Motion JPEG XR specification was approved as an ISO standard for motion (video) compression in March 2010. [21]
JPEG XR's design [1] [22] is conceptually very similar to JPEG: the source image is optionally converted to a luma-chroma colorspace, the chroma planes are optionally subsampled, each plane is divided into fixed-size blocks, the blocks are transformed into the frequency domain, and the frequency coefficients are quantized and entropy coded. Major differences include the following:
The HD Photo bitstream specification claims that "HD Photo offers image quality comparable to JPEG-2000 with computational and memory performance more closely comparable to JPEG", that it "delivers a lossy compressed image of better perceptive quality than JPEG at less than half the file size", and that "lossless compressed images … are typically 2.5 times smaller than the original uncompressed data".
A reference software implementation of JPEG XR has been published as ITU-T Recommendation T.835 and ISO/IEC International Standard 29199-5.
The following notable software products natively support JPEG XR:
Software | Publisher | SDR read | SDR write | HDR read | HDR write | References |
---|---|---|---|---|---|---|
Affinity Designer/Photo/Publisher | Serif Europe | Yes | No | Yes | No | |
Fast Picture Viewer | Axel Rietschin Software Developments | Yes | No | No | No | [30] |
HDR + WCG Image Viewer | Simon Tao | Yes | No | Yes | No | |
Internet Explorer 9, 10, 11 | Microsoft | Yes | No | No | No | [31] [32] |
Microsoft Expression Design | Microsoft | Yes | Yes | No | No | [33] |
Microsoft Expression Media | Microsoft | Yes | No | No | No | |
Microsoft Image Composite Editor | Microsoft | Yes | Yes | No | No | [34] |
Nvidia App (formerly GeForce Experience) | Nvidia | No | No | No | Yes | [35] [36] |
Paint.NET | Rick Brewster | Yes | Yes | No | No | [37] |
Photos (Windows) | Microsoft | Yes | Yes | Yes | Yes | |
Serif PhotoPlus | Serif Europe | Yes | Yes | No | No | [38] |
Windows Photo Gallery | Microsoft | Yes | Yes | No | No | |
Windows Photo Viewer | Microsoft | Yes | No | No | No | |
XnView | Pierre-Emmanuel Gougelet | Yes | Yes | No | No | [39] [40] |
Zoner Photo Studio | Zoner Software | Yes | Yes | No | No | [41] |
The following APIs and software frameworks support JPEG XR, and may be used in other software to provide the JPEG XR support to end users:
The 2011 video game Rage employs JPEG XR compression to compress its textures. [43]
Microsoft has patents on the technology in JPEG XR. A Microsoft representative stated in a January 2007 interview that in order to encourage the adoption and use of HD Photo, the specification is made available under the Microsoft Open Specification Promise, which asserts that Microsoft allows implementation of the specification for free, and will not file suits on the patented technology for its implementation, [44] as reportedly stated by Josh Weisberg, director of Microsoft's Rich Media Group. As of 15 August 2010, Microsoft made the resulting JPEG XR standard available under its Community Promise. [45]
In July 2010, reference software to implement the JPEG XR standard was published as ITU-T Recommendation T.835 and International Standard ISO/IEC 29199-5. Microsoft included these publications in the list of specifications covered by its Community Promise. [45]
In April 2013, Microsoft released jxrlib, an open source JPEG XR library under the BSD licence. [46] [47] This resolved any licensing issues with the library being implemented in software packages distributed under popular open source licences such as the GNU General Public License, with which the previously released "HD Photo Device Porting Kit" [48] was incompatible.
JPEG is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable trade off between storage size and image quality. JPEG typically achieves 10:1 compression with noticeable, but widely agreed to be acceptable perceptible loss in image quality. Since its introduction in 1992, JPEG has been the most widely used image compression standard in the world, and the most widely used digital image format, with several billion JPEG images produced every day as of 2015.
In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. Higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than using lossless techniques.
MPEG-1 is a standard for lossy compression of video and audio. It is designed to compress VHS-quality raw digital video and CD audio down to about 1.5 Mbit/s without excessive quality loss, making video CDs, digital cable/satellite TV and digital audio broadcasting (DAB) practical.
Portable Network Graphics is a raster-graphics file format that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange Format (GIF)—unofficially, the initials PNG stood for the recursive acronym "PNG's not GIF".
Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior results compared with generic data compression methods which are used for other digital data.
JPEG 2000 (JP2) is an image compression standard and coding system. It was developed from 1997 to 2000 by a Joint Photographic Experts Group committee chaired by Touradj Ebrahimi, with the intention of superseding their original JPEG standard, which is based on a discrete cosine transform (DCT), with a newly designed, wavelet-based method. The standardized filename extension is .jp2 for ISO/IEC 15444-1 conforming files and .jpx for the extended part-2 specifications, published as ISO/IEC 15444-2. The MIME types for JPEG 2000 are defined in RFC 3745. The MIME type for JPEG 2000 is image/jp2.
A compression artifact is a noticeable distortion of media caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired disk space or transmitted (streamed) within the available bandwidth. If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts. The compression algorithm may not be intelligent enough to discriminate between distortions of little subjective importance and those objectionable to the user.
Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. It supports a maximum resolution of 8K UHD.
H.262 or MPEG-2 Part 2 is a video coding format standardised and jointly maintained by ITU-T Study Group 16 Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG), and developed with the involvement of many companies. It is the second part of the ISO/IEC MPEG-2 standard. The ITU-T Recommendation H.262 and ISO/IEC 13818-2 documents are identical.
An image file format is a file format for a digital image. There are many formats that can be used, such as JPEG, PNG, and GIF. Most formats up until 2022 were for storing 2D images, not 3D ones. The data stored in an image file format may be compressed or uncompressed. If the data is compressed, it may be done so using lossy compression or lossless compression. For graphic design applications, vector formats are often used. Some image file formats support transparency.
Lossless JPEG is a 1993 addition to JPEG standard by the Joint Photographic Experts Group to enable lossless compression. However, the term may also be used to refer to all lossless compression schemes developed by the group, including JPEG 2000, JPEG-LS, and JPEG XL.
PGF is a wavelet-based bitmapped image format that employs lossless and lossy data compression. PGF was created to improve upon and replace the JPEG format. It was developed at the same time as JPEG 2000 but with a focus on speed over compression ratio.
High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard designed as part of the MPEG-H project as a successor to the widely used Advanced Video Coding. In comparison to AVC, HEVC offers from 25% to 50% better data compression at the same level of video quality, or substantially improved video quality at the same bit rate. It supports resolutions up to 8192×4320, including 8K UHD, and unlike the primarily 8-bit AVC, HEVC's higher fidelity Main 10 profile has been incorporated into nearly all supporting hardware.
WebP is a raster graphics file format developed by Google intended as a replacement for JPEG, PNG, and GIF file formats. It supports both lossy and lossless compression, as well as animation and alpha transparency.
A video coding format is a content representation format of digital video content, such as in a data file or bitstream. It typically uses a standardized video compression algorithm, most commonly based on discrete cosine transform (DCT) coding and motion compensation. A computer software or hardware component that compresses or decompresses a specific video coding format is a video codec.
High Efficiency Image File Format (HEIF) is a digital container format for storing individual digital images and image sequences. The standard covers multimedia files that can also include other media streams, such as timed text, audio and video.
JPEG XT is an image compression standard which specifies backward-compatible extensions of the base JPEG standard.
JPEG XL is a royalty-free open standard for the compressed representation of raster graphics images. It defines a graphics file format and the abstract device for coding JPEG XL bitstreams. It is developed by the Joint Photographic Experts Group (JPEG) and standardized by the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO) as the international standard ISO/IEC 18181. As a superset of JPEG/JFIF encoding, it features a compression mode built on a traditional block-based transform coding core. Additionally, there is a "modular mode" for synthetic image content and lossless compression. Optional lossy quantization enables both lossless and lossy compression.
JPEG XS is an interoperable, visually lossless, low-latency and lightweight image and video coding system used in professional applications. Target applications of the standard include streaming high-quality content for professional video over IP in broadcast and other applications, virtual reality, drones, autonomous vehicles using cameras, gaming. Although there is not an official acronym definition, XS was chosen to highlight the extra small and extra speed characteristics of the codec.
The JPEG XR format replaces the HD Photo/Windows Media™ Photo format in both Windows 8 and the Windows Image Component (WIC). WIC accompanies the Internet Explorer 10 redistributable packages for down-level versions of Windows.