MaxiCode

Last updated
MaxiCode example. This encodes the string "Wikipedia, the free encyclopedia". MaxiCode.svg
MaxiCode example. This encodes the string "Wikipedia, the free encyclopedia".

MaxiCode is a public domain, machine-readable symbol system originally created by the United Parcel Service (UPS) in 1992. [1] Suitable for tracking and managing the shipment of packages, it resembles an Aztec Code or QR code, but uses dots arranged in a hexagonal grid instead of square grid. MaxiCode has been standardised under ISO/IEC 16023. [2]

Contents

A MaxiCode symbol (internally called "Bird's Eye", "Target", "dense code", or "UPS code") appears as a 1-inch square, with a bullseye in the middle, surrounded by a pattern of hexagonal dots. It can store about 93 characters of information, and up to 8 MaxiCode symbols can be chained together to convey more data. The centered symmetrical bullseye is useful in automatic symbol location regardless of orientation, and it allows MaxiCode symbols to be scanned even on a package traveling rapidly.

Structured Carrier Message

MaxiCode Regions.svg

MaxiCode symbols using modes 2 and 3 include a Structured Carrier Message containing key information about a package. This information is protected with a strong Reed–Solomon error correction code, allowing it to be read even if a portion of the symbol is damaged. These fields include:

  1. A 4-bit indication of the mode in use, currently either mode 2 or mode 3.
  2. A national or international postal code. MaxiCode supports both numeric postal codes (e.g. a ZIP Code), and alphanumeric postal codes.
  3. A 3-digit country code encoded per ISO 3166
  4. A 3-digit class of service code assigned by the carrier

The structured portion of the message is stored in the inner area of the symbol, near the bull's-eye pattern. (In modes that do not include a structured portion, the inner area simply stores the beginning of the message.)

Application-specific information

Irrespective of mode, a variable amount of application-specific information can be encoded in a MaxiCode symbol. This format of this additional data is not strictly defined, and amongst other information may include:

Modes

UPS labels use Mode 2 or Mode 3 MaxiCodes.

Related Research Articles

H.263 is a video compression standard originally designed as a low-bit-rate compressed format for videotelephony. It was standardized by the ITU-T Video Coding Experts Group (VCEG) in a project ending in 1995/1996. It is a member of the H.26x family of video coding standards in the domain of the ITU-T.

<span class="mw-page-title-main">MPEG-2</span> Video encoding standard

MPEG-2 is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy video compression and lossy audio data compression methods, which permit storage and transmission of movies using currently available storage media and transmission bandwidth. While MPEG-2 is not as efficient as newer standards such as H.264/AVC and H.265/HEVC, backwards compatibility with existing hardware and software means it is still widely used, for example in over-the-air digital television broadcasting and in the DVD-Video standard.

<span class="mw-page-title-main">JPEG 2000</span> Image compression standard and coding system

JPEG 2000 (JP2) is an image compression standard and coding system. It was developed from 1997 to 2000 by a Joint Photographic Experts Group committee chaired by Touradj Ebrahimi, with the intention of superseding their original JPEG standard, which is based on a discrete cosine transform (DCT), with a newly designed, wavelet-based method. The standardized filename extension is .jp2 for ISO/IEC 15444-1 conforming files and .jpx for the extended part-2 specifications, published as ISO/IEC 15444-2. The registered MIME types are defined in RFC 3745. For ISO/IEC 15444-1 it is image/jp2.

<span class="mw-page-title-main">Character (computing)</span> Primitive data type

In computer and machine-based telecommunications terminology, a character is a unit of information that roughly corresponds to a grapheme, grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written form of a natural language.

Advanced Audio Coding (AAC) is an audio coding standard for lossy digital audio compression. It was designed to be the successor of the MP3 format and generally achieves higher sound quality than MP3 at the same bit rate.

<span class="mw-page-title-main">Advanced Video Coding</span> Most widely used standard for video compression

Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. It supports a maximum resolution of 8K UHD.

<span class="mw-page-title-main">PDF417</span> Type of barcode

PDF417 is a stacked linear barcode format used in a variety of applications such as transport, identification cards, and inventory management. "PDF" stands for Portable Data File. The "417" signifies that each pattern in the code consists of 4 bars and spaces in a pattern that is 17 units (modules) long. The PDF417 symbology was invented by Dr. Ynjiun P. Wang at Symbol Technologies in 1991. It is defined in ISO 15438.

<span class="mw-page-title-main">Aztec Code</span> Type of matrix barcode

The Aztec Code is a matrix code invented by Andrew Longacre, Jr. and Robert Hussey in 1995. The code was published by AIM, Inc. in 1997. Although the Aztec Code was patented, that patent was officially made public domain. The Aztec Code is also published as ISO/IEC 24778:2008 standard. Named after the resemblance of the central finder pattern to an Aztec pyramid, Aztec Code has the potential to use less space than other matrix barcodes because it does not require a surrounding blank "quiet zone".

<span class="mw-page-title-main">QR code</span> Type of matrix barcode

A QR code is a type of two-dimensional matrix barcode, invented in 1994, by Japanese company Denso Wave for labelling automobile parts. A QR code consists of black squares arranged in a square grid on a white background, including some fiducial markers, which can be read by an imaging device, such as a camera, and processed using Reed–Solomon error correction until the image can be appropriately interpreted. The required data are then extracted from patterns that are present in both the horizontal and the vertical components of the QR image.

<span class="mw-page-title-main">Data Matrix</span> Two-dimensional matrix barcode

A Data Matrix is a two-dimensional code consisting of black and white "cells" or dots arranged in either a square or rectangular pattern, also known as a matrix. The information to be encoded can be text or numeric data. Usual data size is from a few bytes up to 1556 bytes. The length of the encoded data depends on the number of cells in the matrix. Error correction codes are often used to increase reliability: even if one or more cells are damaged so it is unreadable, the message can still be read. A Data Matrix symbol can store up to 2,335 alphanumeric characters.

Office Open XML is a zipped, XML-based file format developed by Microsoft for representing spreadsheets, charts, presentations and word processing documents. Ecma International standardized the initial version as ECMA-376. ISO and IEC standardized later versions as ISO/IEC 29500.

JPEG XR is an image compression standard for continuous tone photographic images, based on the HD Photo specifications that Microsoft originally developed and patented. It supports both lossy and lossless compression, and is the preferred image format for Ecma-388 Open XML Paper Specification documents.

<span class="mw-page-title-main">CD-ROM</span> Pre-pressed compact disc containing computer data

A CD-ROM is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both computer data and audio with the latter capable of being played on a CD player, while data is only usable on a computer.

The Health Industry Business Communications Council (HIBCC) is a primary standard-setting and educational organization for healthcare bar coding in the United States. It provides publications, trade shows, educational resources, conferences and training programs.

Extended Channel Interpretation (ECI) is an extension to the communication protocol that is used to transmit data from a bar code reader to a host when a bar code symbol is scanned. It enables the application software to receive additional information about the intended interpretation of the message contained within the barcode symbol and even details about the scan itself. ECI was developed as a symbology-independent extension of the Global Label Identifier (GLI) system used in the PDF417 bar code.

ISO/IEC 20248Automatic Identification and Data Capture Techniques – Data Structures – Digital Signature Meta Structure is an international standard specification under development by ISO/IEC JTC 1/SC 31/WG 2. This development is an extension of SANS 1368, which is the current published specification. ISO/IEC 20248 and SANS 1368 are equivalent standard specifications. SANS 1368 is a South African national standard developed by the South African Bureau of Standards.

<span class="mw-page-title-main">MicroPDF417</span>

MicroPDF417 is two-dimensional (2D) stacked barcode symbology invented in 1996, by Frederick Schuessler, Kevin Hunter, Sundeep Kumar and Cary Chu from Symbol Technologies company. MicroPDF417 consists from specially encoded Row Address Patterns (RAP) columns and aligned to them Data columns encoded in "417" sequence which was invented in 1990. In 2006, the standard was registered as ISO/IEC 24728:2006.

References

  1. Dr. Randal C. Nelson. "Bar Codes". University of Rochester. Retrieved 2023-02-20.
  2. "ISO/IEC 16023:2000". International Standards Organization. Retrieved 20 December 2018. Closed Access logo transparent.svg