Fuel oil

Last updated

An oil tanker taking on fuel, or "bunkering" Bunkering-or-taking-fuel.jpg
An oil tanker taking on fuel, or "bunkering"

Fuel oil (also known as heavy oil, marine fuel or furnace oil) is a fraction obtained from petroleum distillation, either as a distillate or a residue. In general terms, fuel oil is any liquid fuel that is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, except oils having a flash point of approximately 42 °C (108 °F) and oils burned in cotton or wool-wick burners. Fuel oil is made of long hydrocarbon chains, particularly alkanes, cycloalkanes, and aromatics. The term fuel oil is also used in a stricter sense to refer only to the heaviest commercial fuel that can be obtained from crude oil, i.e., heavier than gasoline and naphtha.

Contents

Small molecules like those in propane, naphtha, gasoline for cars, and jet fuel have relatively low boiling points, and they are removed at the start of the fractional distillation process. Heavier petroleum products like diesel fuel and lubricating oil are much less volatile and distill out more slowly, while bunker oil is literally the bottom of the barrel; in oil distilling, the only things denser than bunker fuel are carbon black feedstock and bituminous residue (asphalt), which is used for paving roads and sealing roofs.

Uses

A fuel station in Zigui County on the Yangtze River Zigui-Sinopec-boat-fuel-station-4959.jpg
A fuel station in Zigui County on the Yangtze River
HAZMAT class 3 fuel oil DOT hazmat class 3 (alt 2).svg
HAZMAT class 3 fuel oil

Oil has many uses; it heats homes and businesses and fuels trucks, ships, and some cars. A small amount of electricity is produced by diesel, but it is more polluting and more expensive than natural gas. It is often used as a backup fuel for peaking power plants in case the supply of natural gas is interrupted or as the main fuel for small electrical generators. In Europe, the use of diesel is generally restricted to cars (about 40%), SUVs (about 90%), and trucks and buses (over 99%). The market for home heating using fuel oil has decreased due to the widespread penetration of natural gas as well as heat pumps. However, it is very common in some areas, such as the Northeastern United States.

Fuel oil truck making a delivery in North Carolina, 1945 Fuel Oil Truck 1945.jpg
Fuel oil truck making a delivery in North Carolina, 1945

Residual fuel oil is less useful because it is so viscous that it has to be heated with a special heating system before use and it may contain relatively high amounts of pollutants, particularly sulfur, which forms sulfur dioxide upon combustion. However, its undesirable properties make it very cheap. In fact, it is the cheapest liquid fuel available. Since it requires heating before use, residual fuel oil cannot be used in road vehicles, boats or small ships, as the heating equipment takes up valuable space and makes the vehicle heavier. Heating the oil is also a delicate procedure, which is impractical on small, fast moving vehicles. However, power plants and large ships are able to use residual fuel oil.

Use of residual fuel oil was more common in the past. It powered boilers, railroad steam locomotives, and steamships. Locomotives, however, have become powered by diesel or electric power; steamships are not as common as they were previously due to their higher operating costs (most LNG carriers use steam plants, as "boil-off" gas emitted from the cargo can be used as a fuel source); and most boilers now use heating oil or natural gas. Some industrial boilers still use it and so do some old buildings, including in New York City. In 2011 New York City estimated that the 1% of its buildings that burned fuel oils No. 4 and No. 6 were responsible for 86% of the soot pollution generated by all buildings in the city. New York made the phase out of these fuel grades part of its environmental plan, PlaNYC, because of concerns for the health effects caused by fine particulates, [1] and all buildings using fuel oil No. 6 had been converted to less polluting fuel by the end of 2015. [2]

Residual fuel's use in electrical generation has also decreased. In 1973, residual fuel oil produced 16.8% of the electricity in the US. By 1983, it had fallen to 6.2%, and as of 2005, electricity production from all forms of petroleum, including diesel and residual fuel, is only 3% of total production.[ citation needed ] The decline is the result of price competition with natural gas and environmental restrictions on emissions. For power plants, the costs of heating the oil, extra pollution control and additional maintenance required after burning it often outweigh the low cost of the fuel. Burning fuel oil, particularly residual fuel oil, produces uniformly higher carbon dioxide emissions than natural gas. [3]

Heavy fuel oils continue to be used in the boiler "lighting up" facility in many coal-fired power plants. This use is approximately analogous to using kindling to start a fire. Without performing this act it is difficult to begin the large-scale combustion process.

The chief drawback to residual fuel oil is its high initial viscosity, particularly in the case of No. 6 oil, which requires a correctly engineered system for storage, pumping, and burning. Though it is still usually lighter than water (with a specific gravity usually ranging from 0.95 to 1.03) it is much heavier and more viscous than No. 2 oil, kerosene, or gasoline. No. 6 oil must, in fact, be stored at around 38 °C (100 °F) heated to 65–120 °C (149–248 °F) before it can be easily pumped, and in cooler temperatures it can congeal into a tarry semisolid. The flash point of most blends of No. 6 oil is, incidentally, about 65 °C (149 °F). Attempting to pump high-viscosity oil at low temperatures was a frequent cause of damage to fuel lines, furnaces, and related equipment which were often designed for lighter fuels.

For comparison, BS 2869 Class G heavy fuel oil behaves in similar fashion, requiring storage at 40 °C (104 °F), pumping at around 50 °C (122 °F) and finalising for burning at around 90–120 °C (194–248 °F).

Most of the facilities which historically burned No. 6 or other residual oils were industrial plants and similar facilities constructed in the early or mid 20th century, or which had switched from coal to oil fuel during the same time period. In either case, residual oil was seen as a good prospect because it was cheap and readily available. Most of these facilities have subsequently been closed and demolished, or have replaced their fuel supplies with a simpler one such as gas or No. 2 oil. The high sulfur content of No. 6 oil—up to 3% by weight in some extreme cases—had a corrosive effect on many heating systems (which were usually designed without adequate corrosion protection in mind), shortening their lifespans and increasing the polluting effects. This was particularly the case in furnaces that were regularly shut down and allowed to go cold, because the internal condensation produced sulfuric acid.

Environmental cleanups at such facilities are frequently complicated by the use of asbestos insulation on the fuel feed lines. No. 6 oil is very persistent, and does not degrade rapidly. Its viscosity and stickiness also make remediation of underground contamination very difficult, since these properties reduce the effectiveness of methods such as air stripping.

When released into water, such as a river or ocean, residual oil tends to break up into patches or tarballs – mixtures of oil and particulate matter such as silt and floating organic matter – rather than form a single slick. An average of about 5-10% of the material will evaporate within hours of the release, primarily the lighter hydrocarbon fractions. The remainder will then often sink to the bottom of the water column.

General classification

United States

Although the following trends generally hold true, different organizations may have different numerical specifications for the six fuel grades. The boiling point and carbon chain length of the fuel increases with fuel oil number. Viscosity also increases with number, and the heaviest oil must be heated for it to flow. Price usually decreases as the fuel number increases. [4]

Number 1 fuel oil is a volatile distillate oil intended for vaporizing pot-type burners. [5] It is the kerosene refinery cut that boils off immediately after the heavy naphtha cut used for gasoline. Former names include: coal oil, stove oil, and range oil. [4]

Number 2 fuel oil is a distillate home heating oil. [5] This fuel is sometimes known as Bunker A. Trucks and some cars use similar diesel fuel with a cetane number limit describing the ignition quality of the fuel. Both are typically obtained from the light gas oil cut. Gas oil refers to the original use of this fraction in the late 19th and early 20th centuries – the gas oil cut was used as an enriching agent for carburetted water gas manufacture. [4]

Number 3 fuel oil was a distillate oil for burners requiring low-viscosity fuel. ASTM merged this grade into the number 2 specification, and the term has been rarely used since the mid-20th century. [5]

Number 4 fuel oil is a commercial heating oil for burner installations not equipped with preheaters. [5] It may be obtained from the heavy gas oil cut. [4]

Number 5 fuel oil is a residual-type industrial heating oil requiring preheating to 77–104 °C (171–219 °F) for proper atomization at the burners. [5] This fuel is sometimes known as Bunker B. It may be obtained from the heavy gas oil cut, [4] or it may be a blend of residual oil with enough number 2 oil to adjust viscosity until it can be pumped without preheating. [5]

Number 6 fuel oil is a high-viscosity residual oil requiring preheating to 104–127 °C (219–261 °F). Residual means the material remaining after the more valuable cuts of crude oil have boiled off. The residue may contain various undesirable impurities, including 2% water and 0.5% mineral soil. This fuel may be known as residual fuel oil (RFO), by the Navy specification of Bunker C, or by the Pacific Specification of PS-400. [5]

United Kingdom

The British Standard BS 2869, Fuel Oils for Agricultural, Domestic and Industrial Engines, specifies the following fuel oil classes:

Fuel oil classes per BS 2869
ClassTypeMin. kinematic viscosityMax. kinematic viscosityMin. flash pointMax. sulfur contentAlias
C1Distillate43 °C0.040 % (m/m)Paraffin
C2Distillate1.000 mm2/s at 40 °C2.000 mm2/s at 40 °C38 °C0.100 % (m/m) Kerosene, 28-second oil
A2Distillate2.000 mm2/s at 40 °C5.000 mm2/s at 40 °C> 55 °C0.001 % (m/m)low-sulfur gas oil, ULSD
DDistillate2.000 mm2/s at 40 °C5.000 mm2/s at 40 °C> 55 °C0.100 % (m/m)Gas oil, red diesel, 35-second oil
EResidual8.200 mm2/s at 100 °C66 °C1.000 % (m/m)Light fuel oil, LFO, 250-second oil
FResidual8.201 mm2/s at 100 °C20.000 mm2/s at 100 °C66 °C1.000 % (m/m)Medium fuel oil, MFO, 1000-second oil
GResidual20.010 mm2/s at 100 °C40.000 mm2/s at 100 °C66 °C1.000 % (m/m)Heavy fuel oil, HFO, 3500-second oil
HResidual40.010 mm2/s at 100 °C56.000 mm2/s at 100 °C66 °C1.000 % (m/m)

Class C1 and C2 fuels are kerosene-type fuels. C1 is for use in flueless appliances (e.g. lamps). C2 is for vaporising or atomising burners in appliances connected to flues.

Class A2 fuel is suitable for mobile, off-road applications that are required to use a sulfur-free fuel. Class D fuel is similar to Class A2 and is suitable for use in stationary applications, such as domestic, commercial, and industrial heating. The BS 2869 standard permits Class A2 and Class D fuel to contain up to 7% (V/V) biodiesel (fatty acid methyl ester, FAME), provided the FAME content meets the requirements of the BS EN 14214 standard.

Classes E to H are residual oils for atomizing burners serving boilers or, with the exception of Class H, certain types of larger combustion engines. Classes F to H invariably require heating prior to use; Class E fuel may require preheating, depending on ambient conditions.

Russia

Mazut is a residual fuel oil often derived from Russian petroleum sources and is either blended with lighter petroleum fractions or burned directly in specialized boilers and furnaces. It is also used as a petrochemical feedstock. In the Russian practice, though, "mazut" is an umbrella term roughly synonymous with the fuel oil in general, that covers most of the types mentioned above, except US grades 1 and 2/3, for which separate terms exist (kerosene and diesel fuel/solar oil respectively — Russian practice doesn't differentiate between diesel fuel and heating oil). This is further separated in two grades, "naval mazut" being analogous to US grades 4 and 5, and "furnace mazut", a heaviest residual fraction of the crude, almost exactly corresponding to US Number 6 fuel oil and further graded by viscosity and sulfur content.

Maritime fuel classification

In the maritime field another type of classification is used for fuel oils:

Marine diesel oil contains some heavy fuel oil, unlike regular diesels.

Standards and classification

CCAI and CII are two indexes which describe the ignition quality of residual fuel oil, and CCAI is especially often calculated for marine fuels. Despite this, marine fuels are still quoted on the international bunker markets with their maximum viscosity (which is set by the ISO 8217 standard - see below) due to the fact that marine engines are designed to use different viscosities of fuel. [6] The unit of viscosity used is the centistoke (cSt) and the fuels most frequently quoted are listed below in order of cost, the least expensive first.

The density is also an important parameter for fuel oils since marine fuels are purified before use to remove water and dirt from the oil. Since the purifiers use centrifugal force, the oil must have a density which is sufficiently different from water. Older purifiers work with a fuel having a maximum of 991 kg/m3; with modern purifiers it is also possible to purify oil with a density of 1010 kg/m3.

The first British standard for fuel oil came in 1982. The latest standard is ISO 8217 issued in 2017. [7] The ISO standard describe four qualities of distillate fuels and 10 qualities of residual fuels. Over the years the standards have become stricter on environmentally important parameters such as sulfur content. The latest standard also banned the adding of used lubricating oil (ULO).

Some parameters of marine fuel oils according to ISO 8217 (3. ed 2005):

Marine distillate fuels
ParameterUnitLimitDMXDMADMBDMC
Density at 15 °Ckg/m3Max-890.0900.0920.0
Viscosity at 40 °Cmm2/sMax5.56.011.014.0
mm2/sMin1.41.5--
Water% V/VMax--0.30.3
Sulfur1% (m/m)Max1.01.52.02.0
Aluminium + Silicon2mg/kgMax---25
Flash point 3°CMin43606060
Pour point, Summer°CMax-066
Pour point, Winter°CMax--600
Cloud point °CMax-16---
Calculated Cetane IndexMin454035-
Marine residual fuels
ParameterUnitLimitRMA 30RMB 30RMD 80RME 180RMF 180RMG 380RMH 380RMK 380RMH 700RMK 700
Density at 15 °Ckg/m3Max960.0975.0980.0991.0991.0991.0991.01010.0991.01010.0
Viscosity at 50 °Cmm2/sMax30.030.080.0180.0180.0380.0380.0380.0700.0700.0
Water% V/VMax0.50.50.50.50.50.50.50.50.50.5
Sulfur1% (m/m)Max3.53.53.53.53.53.53.53.53.53.5
Aluminium + Silicon2mg/kgMax80808080808080808080
Flash point 3°CMin60606060606060606060
Pour point, Summer°CMax6243030303030303030
Pour point, Winter°CMax0243030303030303030
  1. Maximum sulfur content in the open ocean is 3.5% since January 2012. Maximum sulfur content in designated areas is 0.1% since 1 January 2015. Before then it was 1.00%.
  2. The content of aluminium and silicon is limited because those metals are dangerous for the engine. Those elements are present because some components of the fuel are manufactured with Fluid Catalytic Cracking process, which makes use of catalyst containing aluminium and silicon.
  3. The flash point of all fuels used in the engine room should be at least 60 °C. (DMX is used for things like emergency generators and not normally used in the engine room. Gaseous fuels such as LPG/LNG have special class rules applied to the fuel systems.)

Bunker fuel

A sample of residual fuel oil Residual fuel oil.JPG
A sample of residual fuel oil

Bunker fuel or bunker crude is technically any type of fuel oil used aboard vessels. Its name is derived from coal bunkers, where the fuel was originally stored. The Australian Customs and the Australian Tax Office defines a bunker fuel as the fuel that powers the engine of a ship or aircraft. Bunker A is No. 2 fuel oil, bunker B is No. 4 or No. 5, and bunker C is No. 6. Since No. 6 is the most common, "bunker fuel" is often used as a synonym for No. 6. No. 5 fuel oil is also called Navy Special Fuel Oil (NSFO) or just navy special; No. 5 or 6 are also commonly called heavy fuel oil (HFO) or furnace fuel oil (FFO); the high viscosity requires heating, usually by a recirculated low pressure steam system, before the oil can be pumped from a bunker tank. Bunkers are rarely labeled this way in modern maritime practice.

Since the 1980s the International Organization for Standardization (ISO) has been the accepted standard for marine fuels (bunkers). The standard is listed under number 8217, with recent updates in 2010 and 2017. The Latest Edition of Bunker fuel specification is ISO 8217: 2017. The standard divides fuels into residual and distillate fuels. The most common residual fuels in the shipping industry are RMG and RMK. [8] The differences between the two are mainly the density and viscosity, with RMG generally being delivered at 380 centistokes or less, and RMK at 700 centistokes or less. Ships with more advanced engines can process heavier, more viscous, and thus cheaper, fuel. Governing bodies around the world, e.g., California, European Union, have established Emission Control Areas (ECA) that limit the maximum sulfur of fuels burned in their ports to limit pollution, reducing the percentage of sulfur and other particulates from 4.5% m/m to as little as 0.10% as of 2015 inside an ECA. As of 2013 3.5% continued to be permitted outside an ECA, but the International Maritime Organization has planned to lower the sulfur content requirement outside the ECAs to 0.5% m/m by 2020. [9] This is where Marine Distillate Fuels and other alternatives [10] to use of heavy bunker fuel come into play. They have similar properties to Diesel #2, which is used as road Diesel around the world. The most common grades used in shipping are DMA and DMB. [11] Greenhouse gas emissions resulting from the use of international bunker fuels are currently included in national inventories. [12] [13]

Table of fuel oils
NameAliasAliasTypeChain length
No. 1 fuel oilNo. 1 distillateNo. 1 Diesel fuelDistillate9-16
No. 2 fuel oilNo. 2 distillateNo. 2 Diesel fuelDistillate10-20
No. 3 fuel oilNo. 3 distillateNo. 3 Diesel fuelDistillate
No. 4 fuel oilNo. 4 distillateNo. 4 residual fuel oilDistillate/Residual12-70
No. 5 fuel oilNo. 5 residual fuel oilHeavy fuel oilResidual12-70
No. 6 fuel oilNo. 6 residual fuel oilHeavy fuel oilResidual20-70

HFO is still the primary fuel for cruise ships, a tourism sector that is associated with a clean and friendly image. In stark contrast, the exhaust gas emissions - due HFO's high sulfur content - result in an ecobalance significantly worse than that for individual mobility. [14] [15] [16]

Bunkering

The term "bunkering" broadly relates to storage of petroleum products in tanks (among other, disparate meanings.) The precise meaning can be further specialized depending on context. Perhaps the most common, more specialized usage refers to the practice and business of refueling ships. Bunkering operations are located at seaports, and they include the storage of bunker (ship) fuels and the provision of the fuel to vessels. [17]

Alternatively "bunkering" may apply to the shipboard logistics of loading fuel and distributing it among available bunkers (on-board fuel tanks). [18]

Finally, in the context of the oil industry in Nigeria, bunkering [19] has come to refer to the illegal diversion of crude oil (often subsequently refined in makeshift facilities into lighter transportation fuels) by the unauthorized cutting of holes into transport pipelines, often by very crude and hazardous means and causing spills.

As of 2018, some 300 million metric tons of fuel oil is used for ship bunkering. On January 1st 2020, regulations set by the International Marine Organization (UN) all marine shipping vessels will require the use of ultra low sulfur fuels (.05% Sulfur or to install exhaust gas scrubber systems to remove the excess sulfur dioxide. These new regulations are meant to combat Greenhouse gases. Therefore it is expected that the excess cheap yet dirty fuel would find its way into other markets, including displacing some onshore energy production in poorer nations. [20]

Transportation

Fuel oil is transported worldwide by fleets of oil tankers making deliveries to suitably sized strategic ports such as Houston, Singapore, Fujairah, Balboa, Cristobal, Sokhna (Egypt), Algeciras, and Rotterdam. Where a convenient seaport does not exist, inland transport may be achieved with the use of barges. Lighter fuel oils can also be transported through pipelines. The major physical supply chains of Europe are along the Rhine River.

Bunker barge is used for supplying to or receiving bunker from ships. [21]

Environmental issues

Emissions from bunker fuel burning in ships contribute to air pollution levels in many port cities, especially where the emissions from industry and road traffic have been controlled. The switch of auxiliary engines from heavy fuel oil to diesel oil at berth can result in large emission reductions, especially for SO2 and PM. CO2 emissions from bunker fuels sold are not added to national GHG emissions. For small countries with large international ports, there is an important difference between the emissions in territorial waters and the total emissions of the fuel sold. [13]

See also

Related Research Articles

Kerosene, also known as paraffin, lamp oil, and coal oil, is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation as well as households. Its name derives from Greek: κηρός (keros) meaning wax, and was registered as a trademark by Canadian geologist and inventor Abraham Gesner in 1854 before evolving into a genericized trademark. It is sometimes spelled kerosine in scientific and industrial usage. The term kerosene is common in much of Argentina, Australia, Canada, India, New Zealand, and the United States, while the term paraffin is used in Chile, eastern Africa, South Africa, Norway, and in the United Kingdom. The term lamp oil, or the equivalent in the local languages, is common in the majority of Asia and "Earth Oil" in some parts of southern Asia. Liquid paraffin is a more viscous and highly refined product which is used as a laxative. Paraffin wax is a waxy solid extracted from petroleum.

Diesel fuel liquid fuel used in diesel engines

Diesel fuel in general is any liquid fuel used in diesel engines, whose fuel ignition takes place, without any spark, as a result of compression of the inlet air mixture and then injection of fuel. Diesel engines have found broad use as a result of higher thermodynamic efficiency and thus fuel efficiency. This is particularly noted where diesel engines are run at part-load; as their air supply is not throttled as in a petrol engine, their efficiency still remains very high.

Biodiesel vegetable oil- or animal fat-based diesel fuel

Biodiesel refers to a vegetable oil- or animal fat-based diesel fuel consisting of long-chain alkyl esters. Biodiesel is typically made by chemically reacting lipids with an alcohol producing fatty acid esters.

Oil refinery industrial process plant where crude oil is processed and refined into more useful products

An oil refinery or petroleum refinery is an industrial process plant where crude oil is transformed and refined into more useful products such as petroleum naphtha, gasoline, diesel fuel, asphalt base, heating oil, kerosene, liquefied petroleum gas, jet fuel and fuel oils. Petrochemicals feed stock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha.

Motor oil Lubricant used for lubrication of internal combustion engines

Motor oil, engine oil, or engine lubricant is any of various substances comprising base oils enhanced with various additives, particularly antiwear additive in addition to detergents, dispersants and, for multi-grade oils, viscosity index improvers. Motor oil is used for lubrication of internal combustion engines. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves sealing of piston rings, and cools the engine by carrying heat away from moving parts.

A visbreaker is a processing unit in an oil refinery whose purpose is to reduce the quantity of residual oil produced in the distillation of crude oil and to increase the yield of more valuable middle distillates by the refinery. A visbreaker thermally cracks large hydrocarbon molecules in the oil by heating in a furnace to reduce its viscosity and to produce small quantities of light hydrocarbons. The process name of "visbreaker" refers to the fact that the process reduces the viscosity of the residual oil. The process is non-catalytic.

Petroleum product useful material derived from crude oil (petroleum)

Petroleum products are materials derived from crude oil (petroleum) as it is processed in oil refineries. Unlike petrochemicals, which are a collection of well-defined usually pure chemical compounds, petroleum products are complex mixtures. The majority of petroleum is converted to petroleum products, which includes several classes of fuels.

Singapore Petroleum Company A Singaporean oil company

Singapore Petroleum Company Limited, in short SPC, is a subsidiary of Chinese state-owned company PetroChina. It is involved in the exploration and production of petroleum, refining, trading and petroleum product distribution.

Petrochemistry is a branch of chemistry that studies the transformation of crude oil (petroleum) and natural gas into useful products or raw materials. These petrochemicals have become an essential part of the chemical industry today.

Petroleum coke

Petroleum coke, abbreviated coke or petcoke, is a final carbon-rich solid material that derives from oil refining, and is one type of the group of fuels referred to as cokes. Petcoke is the coke that, in particular, derives from a final cracking process—a thermo-based chemical engineering process that splits long chain hydrocarbons of petroleum into shorter chains—that takes place in units termed coker units. Stated succinctly, coke is the "carbonization product of high-boiling hydrocarbon fractions obtained in petroleum processing ." Petcoke is also produced in the production of synthetic crude oil (syncrude) from bitumen extracted from Canada’s oil sands and from Venezuela's Orinoco oil sands.

Vegetable oil can be used as an alternative fuel in diesel engines and in heating oil burners. When vegetable oil is used directly as a fuel, in either modified or unmodified equipment, it is referred to as straight vegetable oil (SVO) or pure plant oil (PPO). Conventional diesel engines can be modified to help ensure that the viscosity of the vegetable oil is low enough to allow proper atomization of the fuel. This prevents incomplete combustion, which would damage the engine by causing a build-up of carbon. Straight vegetable oil can also be blended with conventional diesel or processed into biodiesel or bioliquids for use under a wider range of conditions.

Cold ironing

Cold ironing, or shore connection, shore-to-ship power (SSP) or alternative maritime power (AMP), is the process of providing shoreside electrical power to a ship at berth while its main and auxiliary engines are turned off. Cold ironing permits emergency equipment, refrigeration, cooling, heating, lighting and other equipment to receive continuous electrical power while the ship loads or unloads its cargo. Shorepower is a general term to describe supply of electric power to ships, small craft, aircraft and road vehicles while stationary.

Marine Diesel Oil (MDO) is a type of fuel oil and is a blend of gasoil and heavy fuel oil, with less gasoil than intermediate fuel oil used in the maritime field. Marine Diesel Oil is also called "Distillate Marine Diesel". MDO is widely used by medium speed and medium/high speed marine diesel engines. It is also used in the larger low speed and medium speed propulsion engine which normally burn residual fuel. Those fuels result from a catalytic cracking and visbreaking refinery. Marine diesel oil has been condemned for its nimiety of sulfur, so many countries and organizations established regulations and laws on MDO use. Due to its lower price compared to more refined fuel, MDO is favored particularly by shipping industry.

Automotive oil recycling

Automotive oil recycling involves the recycling of used oils and the creation of new products from the recycled oils, and includes the recycling of motor oil and hydraulic oil. Oil recycling also benefits the environment: increased opportunities for consumers to recycle oil lessens the likelihood of used oil being dumped on lands and in waterways. For example, one gallon of motor oil dumped into waterways has the potential to pollute one million gallons of water.

Petroleum refining processes industrial process by which crude oil is processed and refined into more useful products

Petroleum refining processes are the chemical engineering processes and other facilities used in petroleum refineries to transform crude oil into useful products such as liquefied petroleum gas (LPG), gasoline or petrol, kerosene, jet fuel, diesel oil and fuel oils.

Emission Control Areas (ECAs), or Sulfur Emission Control Areas (SECAs), are sea areas in which stricter controls were established to minimize airborne emissions from ships as defined by Annex VI of the 1997 MARPOL Protocol.

Marine LNG Engine

A marine LNG engine is a dual fuel engine that uses natural gas and bunker fuel to convert chemical energy in to mechanical energy. Due to natural gas’ cleaner burning properties, the use of natural gas in merchant ship propulsion plants is becoming an option for companies in order to comply with IMO and MARPOL environmental regulations. The natural gas is stored in liquid state (LNG) and the boil-off gas is routed to and burned in dual fuel engines. Shipping companies have been cautious when choosing a propulsion system for their fleets. The steam turbine system has been the main choice as the prime mover on LNG carriers over the last several decades. The decades-old system on steam propelled LNG carriers uses BOG. LNG carriers are heavily insulated to keep the LNG at around -160 °C – to keep it liquefied. What happens is that even with all the insulation, the LNG containment area is penetrated by heat which allows for naturally generated boil-off gas (BOG).

Base oils are used to manufacture products including lubricating greases, motor oil and metal processing fluids. Different products require different compositions and properties in the oil. One of the most important factors is the liquid’s viscosity at various temperatures. Whether or not a crude oil is suitable to be made into a base oil is determined by the concentration of base oil molecules as well as how easily these can be extracted.

Micro carbon residue, commonly known as "MCR" is a laboratory test used to determine the amount of carbonaceous residue formed after evaporation and pyrolysis of petroleum materials under certain conditions. The test is used to provide some indication of a material's coke-forming tendencies. The test results are equivalent to the test results obtained from the Conradson Carbon Residue test.

Heavy fuel oil Fuel oils of a tar-like consistency

Heavy Fuel Oil (HFO) is a category of fuel oils of a tar-like consistency identified as a "worse case substance". Also known as bunker fuel or residual fuel oil, HFO is the result or remnant from the distillation and cracking process of crude oil. For this reason, HFO is contaminated with several different compounds including aromatics, sulfur and nitrogen, making emission upon combustion more polluting compared to other fuel oils. HFO is predominantly used as a fuel source for marine vessel propulsion due to its relatively low cost compared to cleaner fuel sources such as distillates. The use and carriage of HFO on-board vessels presents several environmental concerns namely: the risk of oil spill and the emission of toxic compounds and particulates including black carbon. Presently, the use of HFOs is banned as a fuel source for ships travelling in the Antarctic as part of the International Maritime Organization's (IMO) International Code for Ships Operating in Polar Waters. For similar reasons, an HFO ban in Arctic waters is currently underway as IMO committed to the prohibition of the use or carriage of HFO within the next several years.

References

  1. "Mayor Bloomberg Presents an Update to PlaNYC: a Greener, Greater New York". NYC.gov. 22 March 2010. Archived from the original on 2 February 2017. Retrieved 22 April 2011.
  2. Office of the Mayor (9 February 2016). "Mayor de Blasio and DEP Announce That All 5,300 Buildings Have Discontinued Use of Most Polluting Heating Oil, Leading to Significantly Cleaner Air". City of New York. Archived from the original on 14 September 2017. Retrieved 14 September 2017.
  3. "U.S. Energy Information Administration (EIA)". Archived from the original on 1 November 2004. Retrieved 21 August 2009.
  4. 1 2 3 4 5 Kent, James A. Riegel's Handbook of Industrial Chemistry (1983) Van Nostrand Reinhold Company ISBN   0-442-20164-8 pp.492-493
  5. 1 2 3 4 5 6 7 Perry, Robert H., Chilton, Cecil H. and Kirkpatrick, Sidney D. Perry's Chemical Engineers' Handbook 4th edition (1963) McGraw Hill p.9-6
  6. "Bunkerworld Account - Login". www.bunkerworld.com. Archived from the original on 3 March 2009. Retrieved 18 February 2009.
  7. https://www.iso.org/standard/64247.html Archived 1 December 2017 at the Wayback Machine ISO8217:2017
  8. "RMG and RMK" (PDF). Archived from the original (PDF) on 26 January 2012.
  9. "Sulfur oxides (SOx) – Regulation 14". International Maritime Organization. Archived from the original on 23 December 2014. Retrieved 11 July 2013. SOx and particulate matter emission controls apply to all fuel oil
  10. Robert Wall (10 July 2013). "Rolls-Royce Revives Age of Sail to Beat Fuel-Cost Surge: Freight". Bloomberg. Archived from the original on 15 July 2013. Retrieved 11 July 2013. a development which will prompt a switch to "a much more diverse fuel pallet"
  11. "DMA and DMB" (PDF). Archived from the original (PDF) on 26 January 2012.
  12. Schrooten, L; De Vlieger, Ina; Int Panis, Luc; Chiffi, Cosimo; Pastori, Enrico (2009). "Emissions of maritime transport: a reference system". Science of the Total Environment. 408 (2): 318–323. doi:10.1016/j.scitotenv.2009.07.037. PMID   19840885.
  13. 1 2 Schrooten, L; De Vlieger, Ina; Int Panis, Luc; Styns, R. Torfs, K; Torfs, R (2008). "Inventory and forecasting of maritime emissions in the Belgian sea territory, an activity based emission model". Atmospheric Environment. 42 (4): 667–676. Bibcode:2008AtmEn..42..667S. doi:10.1016/j.atmosenv.2007.09.071.
  14. Vidal, John (21 May 2016). "The world's largest cruise ship and its supersized pollution problem". the Guardian. Archived from the original on 9 February 2019. Retrieved 21 August 2018. Cruise companies create a picture of being a bright, clean and environmentally friendly tourism sector. But the opposite is true. One cruise ship emits as many air pollutants as five million cars going the same distance because these ships use heavy fuel that on land would have to be disposed of as hazardous waste."... "Heavy fuel oil can contain 3,500 times more sulfur than diesel that is used for land traffic vehicles. Ships do not have exhaust abatement technologies like particulate filters that are standard on passenger cars and lorries
  15. "bunker fuel". Cruise Law News. 31 March 2017. Archived from the original on 21 August 2018. Retrieved 21 August 2018.
  16. "Clean up the Shipping Industry". Stand.earth. 14 December 2016. Archived from the original on 21 August 2018. Retrieved 21 August 2018.
  17. "Bunkering". Maritime and Port Authority of Singapore (MPA). Archived from the original on 7 January 2015. Retrieved 16 January 2015.
  18. MOHIT (19 October 2010). "Bunkering is Dangerous: Procedure for Bunkering Operation on a Ship". Marine Insight. Archived from the original on 31 December 2015. Retrieved 16 January 2015. Site seems to require enabling of cookies.
  19. Jon Gambrell and Associated Press (20 July 2013). "Oil bunkering threatens Nigeria's economy, environment". Washington Post. Archived from the original on 9 March 2016. Retrieved 16 January 2015.
  20. "Power sector's thirst for fuel oil after IMO low sulfur cap shifts bunker demand - Hellenic Shipping News Worldwide". www.hellenicshippingnews.com. Archived from the original on 16 May 2018. Retrieved 16 May 2018.
  21. "What Is Bunkering In Ships? [Complete Guide]". Maritime Manual. 23 October 2018. Archived from the original on 18 April 2019. Retrieved 18 April 2019.
  22. National Geographic magazine, April 2012